<button class="_2lUob" style="font-size: 11px; line-height: 1.15; margin-right: 5px; margin-bottom: 5px; border-radius: 26px; border-width: initial; border-style: none; border-color: initial; padding: 0.4em 1.5em; color: rgb(255, 255, 255); outline: none !important; background-color: rgb(45, 132, 201) !important;">Physics</button>
The heat equation:
"\\frac{\\partial u}{\\partial t}=\\alpha^2\\frac{\\partial^2u}{\\partial x^2}"
In steady state:
"\\frac{\\partial^2u}{\\partial x^2}=0"
Solving, we get
"u=ax+b"
The initial conditions, in steady–state, are
"u=20, x=0"
"u=40, x=L"
Then:
"b=20, a=20\/L"
The temperature function in steady–state is
"u(x)=20x\/L+20"
The boundary conditions in the transient state are
"u(0,t)=50, u(L,t)=10, u(x,0)=20x\/L+20"
We break up the required funciton u (x,t) into two parts:
"u(x,t)=u_s(x)+u_t(x,t)"
"u_s(x)" is a steady state solution, "u_t(x,t)" is a transient solution
"u_s(x)=ax+b"
"b=50, a=-40\/L"
"u_s(x)=-40x\/L+50"
"u_t(x,t)=u(x,t)-u_s(x)"
Putting boundary conditions, we have the boundary conditions relative to the transient solution :
"u_t(0,t)=u(0,t)-u_s(0)=50-50=0"
"u_t(L,t)=u(L,t)-u_s(L)=10-10=0"
"u_t(x,0)=u(x,0)-u_s(x)=20x\/L+20+40x\/L-50=60x\/L-30"
We have:
"u_t(x,t)=(Acos\\lambda x+Bsin\\lambda x)e^{-\\alpha^2\\lambda^2t}"
Using boundary conditions, we get:
"A=0, \\lambda=\\pi n\/L"
Then:
"u_t(x,t)=Bsin\\frac{\\pi nx}{L}e^{-\\frac{\\alpha^2\\pi^2 n^2}{L^2}t}"
The most general solution:
"u_t(x,t)=\\displaystyle\\sum_{n=1}^{\\infin}B_nsin\\frac{\\pi nx}{L}e^{-\\frac{\\alpha^2\\pi^2 n^2}{L^2}t}"
Using boundary conditions:
"u_t(x,0)=\\displaystyle\\sum_{n=1}^{\\infin}B_nsin\\frac{\\pi nx}{L}=60x\/L-30, 0<x<L"
"B_n=\\frac{2}{L}\\displaystyle\\intop_0^L(60x\/L-30)sin\\frac{\\pi nx}{L}dx="
"=\\frac{2}{L}((60x\/L-30)\\frac{-cos(\\pi nx\/L)}{\\pi n\/L}-\\frac{60}{L}\\cdot\\frac{-sin(\\pi nx\/L)}{\\pi^2n^2\/L^2})|^L_0="
"=\\frac{2}{L}(-\\frac{30Lcos(\\pi n)}{\\pi n}-\\frac{30L}{\\pi n})=-\\frac{60}{\\pi n}(cos(\\pi n)+1)"
"B_n=-\\frac{60(1+(-1)^n)}{\\pi n}"
"B_n=0" when "n" is odd
"B_n=-\\frac{120}{\\pi n}" when "n" is even
"u_t(x,t)=\\displaystyle\\sum_{n=2,4,6,..}^{\\infin}(-\\frac{120}{\\pi n}sin\\frac{\\pi nx}{L})e^{-\\frac{\\alpha^2\\pi^2n^2}{L^2}t}"
"u(x,t)=-40x\/L+50+\\displaystyle\\sum_{n=2,4,6,..}^{\\infin}(-\\frac{120}{\\pi n}sin\\frac{\\pi nx}{L})e^{-\\frac{\\alpha^2\\pi^2n^2}{L^2}t}"
Comments
Leave a comment