(3x2+y3+4)dx+(x2−2xy)dy=0M=3x2+y3+4,N=x2−2xydydM=3y2,dxdN=2x−2ydydM=dxdNmultiply through by,xmynxmyn(3x2+y3+4)dx+xmyn(x2−2xy)dy=0(3xm+2yn+xmyn+3+4xmyn)dx+(xm+2yn−2xm+1yn+1)dy=0M=3xm+2yn+xmyn+3+4xmynN=xm+2yn−2xm+1yn+1dydM=3nxm+2yn−1+(n+3)xmyn+2+4nxmyn−1dxdN=(m+2)xm+1yn−2(m+1)xmyn+1dydM=dxdN3nxm+2yn−1+(n+3)xmyn+2+4nxmyn−1=(m+2)xm+1yn−2(m+1)xmyn+13nxm+2yn−1+(n+3)xmyn+2+4nxmyn−1−(m+2)xm+1yn+2(m+1)xmyn+1=0set the coeefficients to be 0, to get the value of m and nintegrating factor is,xmynfor the value of m, n3n=0,n=0n+3=0,n=−34n=0,n=0−m−2=0,m=−22m+2=0,m=−1the integrating factor becomesx0y−2
Comments