Question #171635

what is the integrating factor of the non-exact differential equation (3x^2+y^3+4)dx+(x^2-2xy)dy=0


1
Expert's answer
2021-03-22T03:26:52-0400

(3x2+y3+4)dx+(x22xy)dy=0M=3x2+y3+4,N=x22xydMdy=3y2,dNdx=2x2ydMdydNdxmultiply through by,xmynxmyn(3x2+y3+4)dx+xmyn(x22xy)dy=0(3xm+2yn+xmyn+3+4xmyn)dx+(xm+2yn2xm+1yn+1)dy=0M=3xm+2yn+xmyn+3+4xmynN=xm+2yn2xm+1yn+1dMdy=3nxm+2yn1+(n+3)xmyn+2+4nxmyn1dNdx=(m+2)xm+1yn2(m+1)xmyn+1dMdy=dNdx3nxm+2yn1+(n+3)xmyn+2+4nxmyn1=(m+2)xm+1yn2(m+1)xmyn+13nxm+2yn1+(n+3)xmyn+2+4nxmyn1(m+2)xm+1yn+2(m+1)xmyn+1=0set the coeefficients to be 0, to get the value of m and nintegrating factor is,xmynfor the value of m, n3n=0,n=0n+3=0,n=34n=0,n=0m2=0,m=22m+2=0,m=1the integrating factor becomesx0y2(3x^2+y^3+4)dx+(x^2-2xy)dy=0\\ M=3x^2+y^3+4, N=x^2-2xy\\ \frac{dM}{dy}=3y^2, \frac{dN}{dx}=2x-2y\\ \frac{dM}{dy} \ne \frac{dN}{dx}\\ \text{multiply through by}, x^my^n\\ x^my^n(3x^2+y^3+4)dx+ x^my^n(x^2-2xy)dy=0\\ (3x^{m+2}y^n+x^my^{n+3}+4x^my^n)dx+(x^{m+2}y^n-2x^{m+1}y^{n+1})dy=0\\ M=3x^{m+2}y^n+x^my^{n+3}+4x^my^n\\ N=x^{m+2}y^n-2x^{m+1}y^{n+1}\\ \frac{dM}{dy}=3nx^{m+2}y^{n-1}+(n+3)x^my^{n+2}+4nx^my^{n-1}\\ \frac{dN}{dx}=(m+2)x^{m+1}y^n-2(m+1)x^my^{n+1}\\ \frac{dM}{dy}=\frac{dN}{dx}\\ 3nx^{m+2}y^{n-1}+(n+3)x^my^{n+2}+4nx^my^{n-1}=(m+2)x^{m+1}y^n-2(m+1)x^my^{n+1}\\ 3nx^{m+2}y^{n-1}+(n+3)x^my^{n+2}+4nx^my^{n-1}-(m+2)x^{m+1}y^n+2(m+1)x^my^{n+1}=0\\ \text{set the coeefficients to be 0, to get the value of m and n}\\ \text{integrating factor is}\\, x^my^n \\ \text{for the value of m, n}\\ 3n=0, n=0\\ n+3=0, n=-3\\ 4n=0, n=0\\ -m-2=0, m=-2\\ 2m+2=0, m=-1\\ \text{the integrating factor becomes}\\ x^0y^{-2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS