what is the integrating factor of the non-exact differential equation (3x^2+y^3+4)dx+(x^2-2xy)dy=0
"(3x^2+y^3+4)dx+(x^2-2xy)dy=0\\\\\nM=3x^2+y^3+4, N=x^2-2xy\\\\\n\\frac{dM}{dy}=3y^2, \\frac{dN}{dx}=2x-2y\\\\\n\\frac{dM}{dy} \\ne \\frac{dN}{dx}\\\\\n\\text{multiply through by}, x^my^n\\\\\nx^my^n(3x^2+y^3+4)dx+ x^my^n(x^2-2xy)dy=0\\\\\n(3x^{m+2}y^n+x^my^{n+3}+4x^my^n)dx+(x^{m+2}y^n-2x^{m+1}y^{n+1})dy=0\\\\\nM=3x^{m+2}y^n+x^my^{n+3}+4x^my^n\\\\\nN=x^{m+2}y^n-2x^{m+1}y^{n+1}\\\\\n\\frac{dM}{dy}=3nx^{m+2}y^{n-1}+(n+3)x^my^{n+2}+4nx^my^{n-1}\\\\\n\\frac{dN}{dx}=(m+2)x^{m+1}y^n-2(m+1)x^my^{n+1}\\\\\n\\frac{dM}{dy}=\\frac{dN}{dx}\\\\\n3nx^{m+2}y^{n-1}+(n+3)x^my^{n+2}+4nx^my^{n-1}=(m+2)x^{m+1}y^n-2(m+1)x^my^{n+1}\\\\\n3nx^{m+2}y^{n-1}+(n+3)x^my^{n+2}+4nx^my^{n-1}-(m+2)x^{m+1}y^n+2(m+1)x^my^{n+1}=0\\\\\n\\text{set the coeefficients to be 0, to get the value of m and n}\\\\\n\\text{integrating factor is}\\\\, x^my^n \\\\\n\\text{for the value of m, n}\\\\\n3n=0, n=0\\\\\nn+3=0, n=-3\\\\\n4n=0, n=0\\\\\n-m-2=0, m=-2\\\\\n2m+2=0, m=-1\\\\\n\\text{the integrating factor becomes}\\\\\nx^0y^{-2}"
Comments
Leave a comment