Solve:
(y+z)dx+(z+x)dy+(x+y)dz=0.
Solution:
Here, P=y+z,Q=z+x,R=x+y.
∵∑P(∂z∂Q−∂y∂R)=0.
condition of integrability satisfed.
Rearranging the terms of the given equation,
(ydx+xdy)+(zdx+xdz)+(zdy+ydz)=0
⇒d(xy)+d(zx)+d(zy)=0.
on integration
Answer:
xy+yz+zx=C.
Comments
Leave a comment