Question #171937

x2(d2y/dx2) + x(dy/dx) - 4y = x3

1
Expert's answer
2021-03-18T06:41:43-0400


Given:

x2y′′+xy′−4y=x3x^2y''+xy'-4y=x^3


This is an Euler-Cauchy equation with variable coefficients.

Let's try to solve the following homogeneous equation without y-free part (right hand side):

x2y′′+xy′−4y=0x^2y''+xy'-4y=\bold{0}


Try to find any trivial solution in form:

y=xa,a−consty=x^a, a - const

y′=axa−1,y′′=a(a−1)xa−2y'=ax^{a-1}, y'' = a(a-1)x^{a-2}

x2(a(a−1)xa−2)+x2(axa−1)−4xa=0x^2(a(a-1)x^{a-2})+x^2(ax^{a-1})-4x^a=0


a(a−1)xa+axa−4xa=0a(a-1)x^a+ax^a-4x^a=0

a2−a+a−4=0, a=±2a^2-a+a-4=0,\space a =\pm2


We found two trivial solutions, let's choose the first one:

1. y=x2, 2. y=x−21. \space y=x^2,\space 2.\space y=x^{-2}


Now try to find a general solution in form:

y=x2u(x)=x2uy=x^2u(x)=x^2u

y′=2xu+x2u′y'=2xu+x^2u'

y′′=2u+4xu′+x2u′′y''=2u+4xu'+x^2u''


x2(2u+4xu′+x2u′′)+x(2xu+x2u′)−4x2u=x3x^2(\blue{2u}+4xu'+x^2u'') + x(\blue{2xu}+x^2u')-\blue{4x^2u}=x^3

4x3u′+x4‾u′′+x3u′=x3\blue{4x^3u'}+\underline{x^4}u''+\blue{x^3u'}=x^3

5x3u′+x3x‾u′′=x35\blue{x^3}u'+\underline{\blue{x^3}x}u''=\blue{x^3}

5u′+xu′′=1 (∗)5u'+xu''=1\space(*)


The equation (*) is the first-order linear differential equation.


Let's solve first homogeneous variant of this equation:

5u′+xu′′=05u'+xu''=\bold{0}


To simplify the solution we can use substitution:

u′(x)=t(x)=t, t′=dtdx=u′′u'(x)=t(x)=t, \space t'=\frac{dt}{dx}=u''


5t+xt′=05t+xt'=0

xdtdx=−5tx\frac{dt}{dx}=-5t

dtt=−5dxx (integrate both parts)\frac{dt}{t}=-5\frac{dx}{x} \space (integrate \space both \space parts)

ln∣t∣=−5ln∣x∣+ln∣C∣, C−constln|t|=-5ln|x|+ln|C|, \space C - const

t=Cx5t=\frac{C}{x^5}

Now we can use the method of variation of parameters to find the general solution of (*):

t=C(x)x5, t′=C′(x)x5−5C(x)x6t=\frac{C(x)}{x^5}, \space t'=\frac{C'(x)}{x^5}-5\frac{C(x)}{x^6}

5C(x)x5+xC′(x)x5−5xC(x)x6=1\blue{5\frac{C(x)}{x^5}}+x\frac{C'(x)}{x^5}-\blue{5x\frac{C(x)}{x^6}}=1

xC′(x)x5=1x\frac{C'(x)}{x^5}=1

C′(x)=x4 (integrate both parts)C'(x)=x^4 \space (integrate \space both \space parts)

C(x)=x55+D, D−constC(x)=\frac{x^5}{5}+D, \space D - const


t=C(x)x5=x5+Dx5=15+Dx5t=\frac{C(x)}{x^5}=\frac{x^5+D}{x^5}=\frac{1}{5}+\frac{D}{x^5}


t=u′=15+Dx5 (integrate both parts)t=u'=\frac{1}{5}+\frac{D}{x^5} \space (integrate \space both \space parts)

u=x5−D4x4+E, E−constu=\frac{x}{5}-\frac{D}{4x^4}+E, \space E - const


y=x2u=x2(x5−D4x4+E)=x35−D4x2+Ex2y=x^2u=x^2(\frac{x}{5}-\frac{D}{4x^4}+E)=\frac{x^3}{5}-\frac{D}{4x^2}+Ex^2

Now we can rewrite constants:

C1=−D4, C2=EC_1=-\frac{D}{4}, \space C_2=E


The general solution of the given equation:

y=x35+C1x2+C2x2, C1,C2−consty=\frac{x^3}{5}+\frac{C_1}{x^2}+C_2x^2, \space C_1,C_2 - const


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS