To transform + = — into a linear differential equation with constant coefficients, di2 dx x the required substitution is (a) x = sin t (b) x=t4+1 (c) x = log t (d) x = el
(a)x=sintdxdt=costd2xdt2=−sintd2xdt2=−x, d2xdt2+x=0(b)x=t4+1dxdt=4t3d2xdt2=12t2(d2xdt2)2=144t4(d2xdt2)2=144(x−1)(d2xdt2)2−144(x−1)=0(c)x=logtdxdt=1tdxdt=e−xdxdt−e−x=0(d)x=etdxdt=et=xdxdt−x=0\displaystyle (a)\\ x = \sin{t} \\ \frac{\mathrm{d}x}{\mathrm{d}t} = \cos{t} \\ \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -\sin{t} \\ \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -x,\,\, \frac{\mathrm{d}^2x}{\mathrm{d}t^2} + x = 0 \\ (b) \\ x = t^4 + 1 \\ \frac{\mathrm{d}x}{\mathrm{d}t} = 4t^3\\ \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = 12t^2\\ \left(\frac{\mathrm{d}^2x}{\mathrm{d}t^2}\right)^2 = 144t^4\\ \left(\frac{\mathrm{d}^2x}{\mathrm{d}t^2}\right)^2 = 144(x - 1)\\ \left(\frac{\mathrm{d}^2x}{\mathrm{d}t^2}\right)^2 - 144(x - 1) = 0\\ (c) \\ x = \log{t} \\ \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t} \\ \frac{\mathrm{d}x}{\mathrm{d}t} = e^{-x} \\ \frac{\mathrm{d}x}{\mathrm{d}t} - e^{-x} = 0\\ (d) \\ x = e^t \\ \frac{\mathrm{d}x}{\mathrm{d}t} = e^{t} = x \\ \frac{\mathrm{d}x}{\mathrm{d}t} - x = 0(a)x=sintdtdx=costdt2d2x=−sintdt2d2x=−x,dt2d2x+x=0(b)x=t4+1dtdx=4t3dt2d2x=12t2(dt2d2x)2=144t4(dt2d2x)2=144(x−1)(dt2d2x)2−144(x−1)=0(c)x=logtdtdx=t1dtdx=e−xdtdx−e−x=0(d)x=etdtdx=et=xdtdx−x=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments