To transform + = — into a linear differential equation with constant coefficients, di2 dx x the required substitution is (a) x = sin t (b) x=t4+1 (c) x = log t (d) x = el
"\\displaystyle\n(a)\\\\ x = \\sin{t} \\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}t} = \\cos{t} \\\\\n\n\\frac{\\mathrm{d}^2x}{\\mathrm{d}t^2} = -\\sin{t} \\\\\n\n\\frac{\\mathrm{d}^2x}{\\mathrm{d}t^2} = -x,\\,\\, \\frac{\\mathrm{d}^2x}{\\mathrm{d}t^2} + x = 0 \\\\\n\n\n(b) \\\\ x = t^4 + 1 \\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}t} = 4t^3\\\\\n\n\\frac{\\mathrm{d}^2x}{\\mathrm{d}t^2} = 12t^2\\\\\n\n\\left(\\frac{\\mathrm{d}^2x}{\\mathrm{d}t^2}\\right)^2 = 144t^4\\\\\n\n\\left(\\frac{\\mathrm{d}^2x}{\\mathrm{d}t^2}\\right)^2 = 144(x - 1)\\\\\n\n\\left(\\frac{\\mathrm{d}^2x}{\\mathrm{d}t^2}\\right)^2 - 144(x - 1) = 0\\\\\n\n\n(c) \\\\ x = \\log{t} \\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}t} = \\frac{1}{t} \\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}t} = e^{-x} \\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}t} - e^{-x} = 0\\\\\n\n\n\n(d) \\\\ x = e^t \\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}t} = e^{t} = x \\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}t} - x = 0"
Comments
Leave a comment