(y-zx)p + (x+yz)q= x^2 + y^2
P=y-zx, Q=x+yz, R=x2+y2
"\\frac{dx}{y-zx}=\\frac{dy}{x+yz}=\\frac{dz}{x^2+y^2}"
Multiplyers: -y,-x,1
"\\frac{-ydx-xdy+dz}{-y^2+xyz-x^2-xyz+x^2+y^2}=0"
-ydx-xdy+dz=0
-yx-xy+z=c1
c1=z-2xy
Multiplyers: y,x,-1
"\\frac{ydx+xdy-dz}{y^2-zxy+x^2+zxy-x^2-y^2}=0"
ydx+xdy-dz=0
yx+xy-z=c2
c2=2xy-z
Answer: c1=z-2xy, c2=2xy-z
Comments
Leave a comment