Question #147399
The taut string of length 50 cm fastened at both ends, is distributed from its position of equilibrium by imparting to each of its points an initial velocity of magnitude kx for 0<x<50. Find the displacement function y(x, t).
1
Expert's answer
2020-12-01T06:41:01-0500
SolutionSolution

The displacement of y(x,t)y(x,t) any point x'x' of the sting at any time tt is given by


δ2yδt=a2δ2yδx(1)\frac{\delta^2 y}{\delta t}=a^2\frac{\delta^2 y}{\delta x}----------(1)

We have to solve the equation (1)(1) satisfying the following boundary condition

y(0,t)=0y(0,t)=0, for t0(2)t \geq 0------------------(2)

y(50,t)=0y(50,t)=0, for t0(3)t \geq 0------------------(3)

y(x,0)=0y(x,0)=0, for 0x50(4)0 \leq x \leq 50---------------(4)

δyδt(x,0)=kx\frac{\delta y}{\delta t}(x,0)=kx, for 0x50(5)0 \leq x \leq 50--------------(5)


The suitable solution of equation (1)(1), consistent with the vibration of the string, is,


y(x,y)=(Acosρx+Bsinρx)(Ccosρat+Dsinρat)(6)y(x,y)=(A\cos \rho x+B\sin \rho x)(C\cos \rho at+D\sin \rho at)---(6)


Using boundary conditions (1)(1) and (2)(2) we have


B sin 50ρ(C cosρat+D sin ρat)=0 t0B\ sin\ 50 \rho(C\ cos \rho at+D\ sin\ \rho at)=0\ \forall t\geq0

Either B=0B=0 or sin 50ρ=0sin\ 50 \rho=0


If we assume that B=0B=0 , we get the trivial solution


sin 50ρ=050ρ=nπρ=nπ50sin\ 50\rho=0\\ 50 \rho=n \pi\\ \rho=\frac{n \pi}{50}

Where n=0,1,2,,n=0,1,2,---,\infty

Using boundary conditions (4)(4) in (6)(6), we have

B sin ρx, C=0B\ sin\ \rho x,\ C=0, for 0x500 \leq x \leq 50

As B0B \neq 0, we get C=0C=0


Using these values of A, ρ CA,\ \rho\ C in , the equation (6)(6), the solution reduces to


y(x,t)=k sinnπx50sinnπat50(7)y(x,t)=k\ sin \frac{n \pi x}{50}sin \frac{n \pi at}{50}---------(7)

Where n=0,1,2,,n=0,1,2,---,\infty


The most general solution of Equation (1)(1) is


y(x,t)=x=1λs sinnπ50cosnπat50(8)y(x,t)= \sum_{x=1}^{\infty} \lambda_s\ sin \frac{n \pi}{50}cos \frac{n \pi at}{50}------(8)

Differentiating both sides of (8)(8) partially with respect to tt, we have


δyδt(x,t)=x=1(nπa50λs)sin(nπx50)cos(nπat50)(9)\frac{\delta y}{\delta t}(x,t)=\sum_{x=1}^{\infty}(\frac{n \pi a}{50} \lambda_s)sin(\frac{n \pi x}{50})cos(\frac{n \pi at}{50})---(9)

Using boundary conditions (5)(5) in (9)(9), we have


x=1(nπa50λs)sin(nπx50)=kx\sum_{x=1}^{\infty}(\frac{n \pi a}{50} \lambda_s)sin(\frac{n \pi x}{50})=kx for 0x500 \leq x \leq 50

=x=1b sinnπx50=\sum_{x=1}^{\infty}b\ sin \frac{n \pi x}{50}


Which is the Fourier half-range sine series of kxkx in (0,50)(0,50)

Comparing like terms, we get


nπa50λs=bs=250050f(x)sinnπx25δx\frac{n\pi a}{50}\lambda_s=b_s=\frac{2}{50}\intop^{50}_{0} f(x) sin \frac{n \pi x}{25}\delta x, by Euler's Formula


=250050kx sinnπx25δx=\frac{2}{50}\intop^{50}_{0}kx\ sin \frac{n \pi x}{25}\delta x


{0if n is even200kn2π2aif n is odd\therefore \begin{cases} 0 & if\ n\ is\ even \\ \frac{200k}{n^2\pi^2a} & if\ n\ is\ odd \end{cases}

for Using this value as in , the required solution is


y(x,t)=200kn2π2an=11(2n1)4sin(2n1)πx50cos(2n1)πat50y(x,t)=\frac{200k}{n^2\pi^2a}\sum_{n=1}^{\infty}\frac{1}{(2n-1)^4}sin\frac{(2n-1)\pi x}{50}cos\frac{(2n-1)\pi at}{50}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS