Question #147267
Form the differential equation by eliminating f and ϕ from z = xf(yx)+yϕ(x)
1
Expert's answer
2020-12-01T06:11:32-0500
z(x,y)=xf(yx)+yϕ(x)z(x, y)=xf(yx)+y\phi(x)

p=zx=f(yx)+xyf(yx)+yϕ(x)p=z_x=f(yx)+xyf'(yx)+y\phi'(x)

q=zy=x2f(yx)+ϕ(x)q=z_y=x^2f'(yx)+\phi(x)


zyy=x3f(yx)z_{yy}=x^3f''(yx)

zxy=2xf(yx)+x2yf(yx)+ϕ(x)z_{xy}=2xf'(yx)+x^2yf''(yx)+\phi'(x)


zxy=2xf(yx)+yxzyy+ϕ(x)z_{xy}=2xf'(yx)+\dfrac{y}{x}z_{yy}+\phi'(x)


px+qy=xf(yx)+x2yf(yx)+xyϕ(x)+x2yf(yx)+yϕ(x)px+qy=xf(yx)+x^2yf'(yx)+xy\phi'(x)+x^2yf(yx)+y\phi(x)


px+qy=z+xy(2xf(yx)+ϕ(x))px+qy=z+xy(2xf'(yx)+\phi'(x))


px+qy=z+xy(zxyyxzyy)px+qy=z+xy(z_{xy}-\dfrac{y}{x}z_{yy})


px+qy=z+xyzxyy2zyypx+qy=z+xyz_{xy}-y^2z_{yy}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS