Let us solve the equation:
dx2d2y−2dxdy=exsinx
The characteristic equation of the homogeneous equation is the following:
k2−2=0
Therefore, k1=−2,k2=2 .
According to the method of variation of parameter, the differential equation has the following solution:
y(x)=C1(x)e−2x+C2(x)e2x .
For functions C1(x) and C2(x) we have the following system for their derivatives:
{C1′(x)e−2x+C2′(x)e2x=0−2C1′(x)e−2x+2C2′(x)e2x=exsinx
{C1′(x)e−2x+C2′(x)e2x=0−C1′(x)e−2x+C2′(x)e2x=21exsinx
{C1′(x)e−2x+C2′(x)e2x=02C2′(x)e2x=21exsinx
{C1′(x)=−C2′(x)e22x=0C2′(x)=221e(1−2)xsinx
{C1′(x)=−221e(1+2)xsinxC2′(x)=221e(1−2)xsinx
In the sequel we use the well known formula:
∫eaxsin(bx)dx=a2(a2+b2)b2eax(asin(bx)−bcos(bx))+C
C1(x)=−221(1+2)2((1+2)2+1)e(1+2)x((1+2)sin(x)−cos(x))+C1=−221(3+22)(4+22)e(1+2)x((1+2)sin(x)−cos(x))+C1=
=−22120+142e(1+2)x((1+2)sin(x)−cos(x))+C1=−56+402e(1+2)x((1+2)sin(x)−cos(x))+C1
C2(x)=221(1−2)2((1−2)2+1)e(1−2)x((1−2)sin(x)−cos(x))+C2=221(3−22)(4−22)e(1−2)x((1−2)sin(x)−cos(x))+C2=
=22120−142e(1−2)x((1−2)sin(x)−cos(x))+C2=−56+402e(1−2)x((1−2)sin(x)−cos(x))+C2
Consequently, the solution is the following:
y(x)=(−56+402e(1+2)x((1+2)sin(x)−cos(x))+C1)e−2x+(−56+402e(1−2)x((1−2)sin(x)−cos(x))+C2)e2x
Comments