Question #143645
Solve, using the method of variation of parameter,the following differential equation
d^2y/dx^2-2dy/dz=e^x.sinx
1
Expert's answer
2020-11-11T18:09:37-0500

Let us solve the equation:


d2ydx22dydx=exsinx\frac{d^2y}{dx^2}-2\frac{dy}{dx}=e^x \sin x


The characteristic equation of the homogeneous equation is the following:


k22=0k^2-2=0


Therefore, k1=2,k2=2k_1=-\sqrt{2}, k_2=\sqrt{2} .


According to the method of variation of parameter, the differential equation has the following solution:


y(x)=C1(x)e2x+C2(x)e2xy(x)=C_1(x)e^{-\sqrt{2}x}+ C_2(x)e^{\sqrt{2}x} .


For functions C1(x)C_1(x) and C2(x)C_2(x) we have the following system for their derivatives:


{C1(x)e2x+C2(x)e2x=02C1(x)e2x+2C2(x)e2x=exsinx\begin{cases} C_1'(x)e^{-\sqrt{2}x}+ C_2'(x)e^{\sqrt{2}x} =0\\ -\sqrt{2} C_1'(x)e^{-\sqrt{2}x}+\sqrt{2} C_2'(x)e^{\sqrt{2}x} =e^x\sin x \end{cases}


{C1(x)e2x+C2(x)e2x=0C1(x)e2x+C2(x)e2x=12exsinx\begin{cases} C_1'(x)e^{-\sqrt{2}x}+ C_2'(x)e^{\sqrt{2}x} =0\\ -C_1'(x)e^{-\sqrt{2}x}+ C_2'(x)e^{\sqrt{2}x} =\frac{1}{\sqrt{2}}e^x\sin x \end{cases}


{C1(x)e2x+C2(x)e2x=02C2(x)e2x=12exsinx\begin{cases} C_1'(x)e^{-\sqrt{2}x}+ C_2'(x)e^{\sqrt{2}x} =0\\ 2C_2'(x)e^{\sqrt{2}x} =\frac{1}{\sqrt{2}}e^x\sin x \end{cases}


{C1(x)=C2(x)e22x=0C2(x)=122e(12)xsinx\begin{cases} C_1'(x)=- C_2'(x)e^{2\sqrt{2}x} =0\\ C_2'(x) =\frac{1}{2\sqrt{2}}e^{(1-\sqrt{2})x}\sin x \end{cases}


{C1(x)=122e(1+2)xsinxC2(x)=122e(12)xsinx\begin{cases} C_1'(x)=- \frac{1}{2\sqrt{2}}e^{(1+\sqrt{2})x}\sin x \\ C_2'(x) =\frac{1}{2\sqrt{2}}e^{(1-\sqrt{2})x}\sin x \end{cases}


In the sequel we use the well known formula:


eaxsin(bx)dx=b2eax(asin(bx)bcos(bx))a2(a2+b2)+C\int e^{ax}\sin (bx) dx =\frac{b^2e^{ax}(a\sin(bx)-b\cos(bx))}{a^2(a^2+b^2)}+C



C1(x)=122e(1+2)x((1+2)sin(x)cos(x))(1+2)2((1+2)2+1)+C1=122e(1+2)x((1+2)sin(x)cos(x))(3+22)(4+22)+C1=C_1(x)=-\frac{1}{2\sqrt{2}}\frac{e^{(1+\sqrt{2})x}((1+\sqrt{2})\sin(x)-\cos(x))}{(1+\sqrt{2})^2((1+\sqrt{2})^2+1)}+C_1=-\frac{1}{2\sqrt{2}}\frac{e^{(1+\sqrt{2})x}((1+\sqrt{2})\sin(x)-\cos(x))}{(3+2\sqrt{2})(4+2\sqrt{2})}+C_1=


=122e(1+2)x((1+2)sin(x)cos(x))20+142+C1=e(1+2)x((1+2)sin(x)cos(x))56+402+C1=-\frac{1}{2\sqrt{2}}\frac{e^{(1+\sqrt{2})x}((1+\sqrt{2})\sin(x)-\cos(x))}{20+14\sqrt{2}}+C_1 =-\frac{e^{(1+\sqrt{2})x}((1+\sqrt{2})\sin(x)-\cos(x))}{56+40\sqrt{2}}+C_1



C2(x)=122e(12)x((12)sin(x)cos(x))(12)2((12)2+1)+C2=122e(12)x((12)sin(x)cos(x))(322)(422)+C2=C_2(x)=\frac{1}{2\sqrt{2}}\frac{e^{(1-\sqrt{2})x}((1-\sqrt{2})\sin(x)-\cos(x))}{(1-\sqrt{2})^2((1-\sqrt{2})^2+1)}+C_2= \frac{1}{2\sqrt{2}}\frac{e^{(1-\sqrt{2})x}((1-\sqrt{2})\sin(x)-\cos(x))}{(3-2\sqrt{2})(4-2\sqrt{2})}+C_2=


=122e(12)x((12)sin(x)cos(x))20142+C2=e(12)x((12)sin(x)cos(x))56+402+C2=\frac{1}{2\sqrt{2}}\frac{e^{(1-\sqrt{2})x}((1-\sqrt{2})\sin(x)-\cos(x))}{20-14\sqrt{2}}+C_2= \frac{e^{(1-\sqrt{2})x}((1-\sqrt{2})\sin(x)-\cos(x))}{-56+40\sqrt{2}}+C_2



Consequently, the solution is the following:



y(x)=(e(1+2)x((1+2)sin(x)cos(x))56+402+C1)e2x+(e(12)x((12)sin(x)cos(x))56+402+C2)e2xy(x)=(-\frac{e^{(1+\sqrt{2})x}((1+\sqrt{2})\sin(x)-\cos(x))}{56+40\sqrt{2}}+C_1)e^{-\sqrt{2}x}+ (\frac{e^{(1-\sqrt{2})x}((1-\sqrt{2})\sin(x)-\cos(x))}{-56+40\sqrt{2}}+C_2)e^{\sqrt{2}x}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS