y"+4y′+4y=x3e2xThe solution to the above equation isy=yc+ypwhereycis the complementary factor andyp is the particular integralThe auxiliary equation ism2+4m+4=0(m+2)(m+2)∴m=0=−2twice∴yc=(C1x+C2)e−2xThe Wronskian of the two solution isW(x)=e−∫4dx=e−4xyp=V1(x)e−2x+xV2(x)e−2xV2(x)=∫e−2x⋅e−4xx3e2x=∫x3e4xdx=∫x3d(4e4x)=4−x3e4x+3∫4x2e4xdx=4x3e4x−43∫x2e4xdx=4x3e4x−43∫x2d(4e4x)=4x3e4x−163x2e4x+166∫xe4xdx=4x3e4x−163x2e4x+166∫xd(4e4x)=4x3e4x−163x2e4x+646xe4x−646∫e4xdx=4x3e4x−163x2e4x+646xe4x−2566e4xV1(x)=−∫xe−2x⋅e−4xx3e2x=−∫x4e4xdx=−∫x4d(4e4x)=−4x4e4x+∫x3e4xdx=−4x4e4x+V2(x)=−4x4e4x+4x3e4x−163x2e4x+646xe4x−2566e4xyp=xe−2x(4x3e4x−163x2e4x+646xe4x−2566e4x)+e−2x(4x4e4x+4x3e4x−163x2e4x+646xe4x−2566e4x)=4x4e2x−163x3e2x+646x2e2x−2566xe2x−4x4e2x+4x3e2x−163x2e2x+646xe2x−2566e2x=16x3e2x−25624x2e2x+25618xe2x−2566e2x=16x3e2x−323x2e2x+1289xe2x−1283e2x=128e2x(8x3−4x2+9xe2x−3e2x)∴y=(C1x+C2)e−2x+128e2x(8x3−4x2+9xe2x−3e2x)
Comments