Question #140347

Solve the ODE

y00 + 4y0 + 4y =

e􀀀2x

x3

using the method of variation of parameters


1
Expert's answer
2020-10-27T16:03:00-0400

y"+4y+4y=x3e2xThe solution to the above equation isy=yc+ypwhereycis the complementary factor andyp is the particular integralThe auxiliary equation ism2+4m+4=0(m+2)(m+2)=0m=2twiceyc=(C1x+C2)e2xThe Wronskian of the two solution isW(x)=e4dx=e4xyp=V1(x)e2x+xV2(x)e2xV2(x)=e2xx3e2xe4x=x3e4xdx=x3d(e4x4)=x3e4x4+3x2e4x4dx=x3e4x434x2e4xdx=x3e4x434x2d(e4x4)=x3e4x43x2e4x16+616xe4xdx=x3e4x43x2e4x16+616xd(e4x4)=x3e4x43x2e4x16+6xe4x64664e4xdx=x3e4x43x2e4x16+6xe4x646e4x256V1(x)=xe2xx3e2xe4x=x4e4xdx=x4d(e4x4)=x4e4x4+x3e4xdx=x4e4x4+V2(x)=x4e4x4+x3e4x43x2e4x16+6xe4x646e4x256yp=xe2x(x3e4x43x2e4x16+6xe4x646e4x256)+e2x(x4e4x4+x3e4x43x2e4x16+6xe4x646e4x256)=x4e2x43x3e2x16+6x2e2x646xe2x256x4e2x4+x3e2x43x2e2x16+6xe2x646e2x256=x3e2x1624x2e2x256+18xe2x2566e2x256=x3e2x163x2e2x32+9xe2x1283e2x128=e2x128(8x34x2+9xe2x3e2x)y=(C1x+C2)e2x+e2x128(8x34x2+9xe2x3e2x)\displaystyle y" + 4y' + 4y = x^3 e^{2x}\\ \textsf{The solution to the above equation is}\\ y = y_c + y_p \\ \textsf{where}\, y_c \, \textsf{is the complementary factor and}\\ y_p\, \textsf{ is the particular integral}\\ \textsf{The auxiliary equation is} \,m^2 + 4m + 4 = 0 \\ \begin{aligned} (m + 2)(m + 2) &= 0 \\ \therefore m &= -2 \, \textsf{twice} \end{aligned}\\ \therefore y_c = (C_1x + C_2)e^{-2x}\\ \textsf{The Wronskian of the two solution is}\\ W(x) = e^{-\int 4\, \mathrm{d}x} = e^{-4x}\\ y_p = V_1(x)e^{-2x} + xV_2(x)e^{-2x} \\ \begin{aligned} V_2(x) &= \int e^{-2x}\cdot\frac{x^3 e^{2x}}{e^{-4x}} = \int x^3 e^{4x}\, \mathrm{d}x\\ &= \int x^3\mathrm{d}\left(\frac{e^{4x}}{4}\right)\\ &= \frac{-x^3e^{4x}}{4} + 3\int\frac{x^2e^{4x}}{4}\, \mathrm{d}x \\ &=\frac{x^3e^{4x}}{4} - \frac{3}{4}\int x^2e^{4x} \mathrm{d}x\\ &=\frac{x^3e^{4x}}{4} - \frac{3}{4}\int x^2 \mathrm{d}\left(\frac{e^{4x}}{4}\right)\\&=\frac{x^3e^{4x}}{4} - \frac{3x^2e^{4x}}{16} + \frac{6}{16}\int xe^{4x}\, \mathrm{d}x\\&=\frac{x^3e^{4x}}{4} - \frac{3x^2e^{4x}}{16} + \frac{6}{16}\int x\mathrm{d}\left(\frac{e^{4x}}{4}\right)\\&=\frac{x^3e^{4x}}{4} - \frac{3x^2e^{4x}}{16} + \frac{6xe^{4x}}{64} - \frac{6}{64}\int e^{4x}\, \mathrm{d}x \\&=\frac{x^3e^{4x}}{4} - \frac{3x^2e^{4x}}{16} + \frac{6xe^{4x}}{64} - \frac{6e^{4x}}{256} \end{aligned}\\ \begin{aligned} V_1(x) &= -\int xe^{-2x}\cdot\frac{x^3 e^{2x}}{e^{-4x}} = -\int x^4 e^{4x}\, \mathrm{d}x\\ &= -\int x^4\mathrm{d}\left(\frac{e^{4x}}{4}\right)\\ &= -\frac{x^4e^{4x}}{4} + \int x^3 e^{4x}\, \mathrm{d}x\\ \\ &= -\frac{x^4e^{4x}}{4} + V_2(x)\\ &= -\frac{x^4e^{4x}}{4} + \frac{x^3e^{4x}}{4} - \frac{3x^2e^{4x}}{16} + \frac{6xe^{4x}}{64} - \frac{6e^{4x}}{256} \end{aligned}\\ \begin{aligned} y_p &= xe^{-2x}\left(\frac{x^3e^{4x}}{4} - \frac{3x^2e^{4x}}{16} + \frac{6xe^{4x}}{64} - \frac{6e^{4x}}{256}\right) \\&+ e^{-2x}\left(\frac{x^4e^{4x}}{4} + \frac{x^3e^{4x}}{4} - \frac{3x^2e^{4x}}{16} + \frac{6xe^{4x}}{64} - \frac{6e^{4x}}{256}\right)\\ &=\frac{x^4e^{2x}}{4} - \frac{3x^3e^{2x}}{16} + \frac{6x^2e^{2x}}{64} - \frac{6xe^{2x}}{256} \\&- \frac{x^4e^{2x}}{4} + \frac{x^3e^{2x}}{4} - \frac{3x^2e^{2x}}{16} + \frac{6xe^{2x}}{64} - \frac{6e^{2x}}{256} \\&=\frac{x^3e^{2x}}{16} - \frac{24x^2e^{2x}}{256} + \frac{18xe^{2x}}{256} - \frac{6e^{2x}}{256} \\&=\frac{x^3e^{2x}}{16} - \frac{3x^2e^{2x}}{32} + \frac{9xe^{2x}}{128} - \frac{3e^{2x}}{128} \\&= \frac{e^{2x}}{128}\left(8x^3 - 4x^2 + 9xe^{2x} - 3e^{2x}\right) \end{aligned}\\ \therefore y = (C_1x + C_2)e^{-2x} + \frac{e^{2x}}{128}\left(8x^3 - 4x^2 + 9xe^{2x} - 3e^{2x}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS