Question #136262
Find the Laplace transforms of
f(t)={4,0<=t<=1
{3,t>1.
1
Expert's answer
2020-10-04T18:02:13-0400

The Laplace transform is F(s)=0estf(t)dt.F(s) = \int\limits_0^{\infty} e^{-st}f(t)\,dt.

F(s)={01est4dt,0t1,1est3dt,1<tF(s) = \begin{cases} \int\limits_0^{1} e^{-st}4\,dt, & 0\le t \le 1, \\ \int\limits_1^{\infty} e^{-st}3\,dt, & 1 < t \end{cases}\\

F(s)={4s(1es),0t1,3s(eslimtest),1<tF(s) = \begin{cases} \dfrac{4}{s}\left(1 -{ e}^{-s}\right) , & 0\le t \le 1, \\[0.4cm] \dfrac{3}{s}\left(e^{-s} - \lim\limits_{t\to\infty}e^{-st} \right) , & 1 < t \end{cases}

The last limit is finite only for s > 0 and transforms into 3ses.\dfrac{3}{s}e^{-s}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS