The Laplace transform is "F(s) = \\int\\limits_0^{\\infty} e^{-st}f(t)\\,dt."
"F(s) = \\begin{cases} \\int\\limits_0^{1} e^{-st}4\\,dt, & 0\\le t \\le 1, \\\\ \\int\\limits_1^{\\infty} e^{-st}3\\,dt, & 1 < t \\end{cases}\\\\"
"F(s) = \\begin{cases} \\dfrac{4}{s}\\left(1 -{ e}^{-s}\\right) , & 0\\le t \\le 1, \\\\[0.4cm] \\dfrac{3}{s}\\left(e^{-s} - \\lim\\limits_{t\\to\\infty}e^{-st} \\right) , & 1 < t \\end{cases}"
The last limit is finite only for s > 0 and transforms into "\\dfrac{3}{s}e^{-s}."
Comments
Leave a comment