The Laplace transform is F(s)=∫0∞e−stf(t) dt.F(s) = \int\limits_0^{\infty} e^{-st}f(t)\,dt.F(s)=0∫∞e−stf(t)dt.
F(s)={∫01e−st4 dt,0≤t≤1,∫1∞e−st3 dt,1<tF(s) = \begin{cases} \int\limits_0^{1} e^{-st}4\,dt, & 0\le t \le 1, \\ \int\limits_1^{\infty} e^{-st}3\,dt, & 1 < t \end{cases}\\F(s)=⎩⎨⎧0∫1e−st4dt,1∫∞e−st3dt,0≤t≤1,1<t
F(s)={4s(1−e−s),0≤t≤1,3s(e−s−limt→∞e−st),1<tF(s) = \begin{cases} \dfrac{4}{s}\left(1 -{ e}^{-s}\right) , & 0\le t \le 1, \\[0.4cm] \dfrac{3}{s}\left(e^{-s} - \lim\limits_{t\to\infty}e^{-st} \right) , & 1 < t \end{cases}F(s)=⎩⎨⎧s4(1−e−s),s3(e−s−t→∞lime−st),0≤t≤1,1<t
The last limit is finite only for s > 0 and transforms into 3se−s.\dfrac{3}{s}e^{-s}.s3e−s.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments