F(s)=∫0∞e−tsf(t)dt 1. f(t)=t2e2t
F(s)=∫0∞e−tst2e2tdt∫t2e(2−s)tdt=2−s1t2e(2−s)t−2−s2∫te(2−s)tdt=
=2−s1t2e(2−s)t−(2−s)22te(2−s)t+
+(2−s)22∫e(2−s)tdt=2−st2e(2−s)t−
−(2−s)22te(2−s)t+(2−s)32e(2−s)t+C
F(s)=∫0∞e−tst2e2tdt=
=b→∞lim[−s−2t2e(s−2)t−(s−2)22te(s−2)t−(s−2)32e(s−2)t]b0=
=−0−0−0+0+0+(s−2)32=(s−2)32,s=2
L(t2e2t)=(s−2)32,s=2
2. f(t)=(1+e−t)3=1+3e−t+3e−2t+e−3t
F(s)=∫0∞e−ts(1+3e−t+3e−2t+e−3t)dt=
=∫0∞(e−ts+3e−(s+1)t+3e−(s+2)t+e−(s+3)t)dt=
=b→∞lim[−se−t−s+13e−(s+1)t−s+23e(s+2)t−s+3e(s+3)t]b0=
=−0−0−0−0+s1+s+13+s+23+s+31
L((1+e−t)3)=s1+s+13+s+23+s+31, s=−3,s=−2,s=−1,s=0
3.
f(t)=t1+sint=
=tsin2(t/2)+2sin(t/2)cos(t/2)+cos2(t/2)=
=t∣sin(t/2)+cos(t/2)∣
Let sin(t/2)+cos(t/2)≥0. Then
f(t)=t(sin(t/2)+cos(t/2))
L(sin(t/2)+cos(t/2))=L(sin(t/2))+L(cos(t/2))=
=s2+4121+s2+41s
By multiplication by t property
L(t(sin(t/2)+cos(t/2)))=−1dsd(s2+4121+s)=
=−(s2+41)2s2+41−s−2s2=
=(s2+41)2s2+s−41=(4s2+1)24(4s2+4s−1)
L(t1+sint)=(4s2+1)24(4s2+4s−1)
Comments