Question #135969

Find the Laplace transforms of

1.(t^2 e^2t)

2.[1+e^(-t)]^3

3. [t√(1+sin t)]



1
Expert's answer
2020-10-01T11:47:41-0400
F(s)=0etsf(t)dtF(s)=\displaystyle\int_{0}^\infin e^{-ts}f(t)dt

1. f(t)=t2e2tf(t)=t^2e^{2t}


F(s)=0etst2e2tdtF(s)=\displaystyle\int_{0}^\infin e^{-ts}t^2e^{2t}dtt2e(2s)tdt=12st2e(2s)t22ste(2s)tdt=\int t^2 e^{(2-s)t}dt=\dfrac{1}{2-s}t^2e^{(2-s)t}-\dfrac{2}{2-s}\int te^{(2-s)t}dt=

=12st2e(2s)t2(2s)2te(2s)t+=\dfrac{1}{2-s}t^2e^{(2-s)t}-\dfrac{2}{(2-s)^2}te^{(2-s)t}+

+2(2s)2e(2s)tdt=t22se(2s)t+\dfrac{2}{(2-s)^2}\int e^{(2-s)t}dt=\dfrac{t^2}{2-s}e^{(2-s)t}-

2t(2s)2e(2s)t+2(2s)3e(2s)t+C-\dfrac{2t}{(2-s)^2}e^{(2-s)t}+\dfrac{2}{(2-s)^3}e^{(2-s)t}+C

F(s)=0etst2e2tdt=F(s)=\displaystyle\int_{0}^\infin e^{-ts}t^2e^{2t}dt=

=limb[t2e(s2)ts22te(s2)t(s2)22e(s2)t(s2)3]b0==\lim\limits_{b\to\infin}\bigg[-\dfrac{t^2e^{(s-2)t}}{s-2}-\dfrac{2te^{(s-2)t}}{(s-2)^2}-\dfrac{2e^{(s-2)t}}{(s-2)^3}\bigg]\begin{matrix} b \\ 0 \end{matrix}=

=000+0+0+2(s2)3=2(s2)3,s2=-0-0-0+0+0+\dfrac{2}{(s-2)^3}=\dfrac{2}{(s-2)^3}, s\not=2

L(t2e2t)=2(s2)3,s2L(t^2e^{2t})=\dfrac{2}{(s-2)^3}, s\not=2


2. f(t)=(1+et)3=1+3et+3e2t+e3tf(t)=(1+e^{-t})^3=1+3e^{-t}+3e^{-2t}+e^{-3t}

F(s)=0ets(1+3et+3e2t+e3t)dt=F(s)=\displaystyle\int_{0}^\infin e^{-ts}(1+3e^{-t}+3e^{-2t}+e^{-3t})dt=


=0(ets+3e(s+1)t+3e(s+2)t+e(s+3)t)dt==\displaystyle\int_{0}^\infin (e^{-ts}+3e^{-(s+1)t}+3e^{-(s+2)t}+e^{-(s+3)t})dt=


=limb[ets3e(s+1)ts+13e(s+2)ts+2e(s+3)ts+3]b0==\lim\limits_{b\to\infin}\bigg[-\dfrac{e^{-t}}{s}-\dfrac{3e^{-(s+1)t}}{s+1}-\dfrac{3e^{(s+2)t}}{s+2}-\dfrac{e^{(s+3)t}}{s+3}\bigg]\begin{matrix} b \\ 0 \end{matrix}=

=0000+1s+3s+1+3s+2+1s+3=-0-0-0-0+\dfrac{1}{s}+\dfrac{3}{s+1}+\dfrac{3}{s+2}+\dfrac{1}{s+3}

L((1+et)3)=1s+3s+1+3s+2+1s+3,L((1+e^{-t})^3)=\dfrac{1}{s}+\dfrac{3}{s+1}+\dfrac{3}{s+2}+\dfrac{1}{s+3},

s3,s2,s1,s0s\not=-3, s\not=-2, s\not=-1, s\not=0


3.

f(t)=t1+sint=f(t)=t\sqrt{1+\sin{t}}=


=tsin2(t/2)+2sin(t/2)cos(t/2)+cos2(t/2)==t\sqrt{\sin^2{(t/2)}+2\sin{(t/2)}\cos{(t/2)}+\cos^2{(t/2)}}=


=tsin(t/2)+cos(t/2)=t|\sin{(t/2)}+\cos{(t/2)}|

Let sin(t/2)+cos(t/2)0.\sin{(t/2)}+\cos{(t/2)}\geq0. Then

f(t)=t(sin(t/2)+cos(t/2))f(t)=t(\sin{(t/2)}+\cos{(t/2)})

L(sin(t/2)+cos(t/2))=L(sin(t/2))+L(cos(t/2))=L(\sin{(t/2)}+\cos{(t/2)})=L(\sin{(t/2)})+L(\cos{(t/2)})=

=12s2+14+ss2+14=\dfrac{\dfrac{1}{2}}{s^2+\dfrac{1}{4}}+\dfrac{s}{s^2+\dfrac{1}{4}}


By multiplication by tt property

L(t(sin(t/2)+cos(t/2)))=1dds(12+ss2+14)=L(t(\sin{(t/2)}+\cos{(t/2)}))=-1\dfrac{d}{ds}\bigg(\dfrac{\dfrac{1}{2}+s}{s^2+\dfrac{1}{4}}\bigg)=

=s2+14s2s2(s2+14)2==-\dfrac{s^2+\dfrac{1}{4}-s-2s^2}{(s^2+\dfrac{1}{4})^2}=

=s2+s14(s2+14)2=4(4s2+4s1)(4s2+1)2=\dfrac{s^2+s-\dfrac{1}{4}}{(s^2+\dfrac{1}{4})^2}=\dfrac{4(4s^2+4s-1)}{(4s^2+1)^2}


L(t1+sint)=4(4s2+4s1)(4s2+1)2L(t\sqrt{1+\sin{t}})=\dfrac{4(4s^2+4s-1)}{(4s^2+1)^2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS