Given the Dirichlet problem with the initial Dirichlet boundary conditions
u ( 0 , t ) = 0 = u ( L , t ) u(0,t)=0=u(L,t) u ( 0 , t ) = 0 = u ( L , t )
Then the problem has at most one solution.
To solve this ,
Suppose that the problem has two solutions u 1 u_1 u 1 and u 2 u_2 u 2 . Setting u = u 1 − u 2 u=u_1−u_2 u = u 1 − u 2 , the function u u u solves
{ u t − k u x x = 0 x ∈ [ 0 , L ] , t > 0 u ( 0 , t ) = 0 , u ( L , t ) = 0 t ≥ 0 u ( x , 0 ) = 0 x ∈ [ 0 , L ] \begin{cases}
u_t-ku_{xx}=0 & x\in [0,L], t>0\\
u(0,t)=0, u(L,t)=0 & t \geq0 \\
u(x,0)=0 & x\in [0,L]
\end{cases} ⎩ ⎨ ⎧ u t − k u xx = 0 u ( 0 , t ) = 0 , u ( L , t ) = 0 u ( x , 0 ) = 0 x ∈ [ 0 , L ] , t > 0 t ≥ 0 x ∈ [ 0 , L ] Define the energy
E ( t ) = 1 2 ∫ 0 L ( ( A s i n p c x + B c o s p c x ) ( C s i n p c t + D c o s p c t ) ) 2 d x E(t)=\frac12 \intop_0^L((A\ sin\ pcx+ B\ cos\ pcx)(C\ sin\ pct+ D\ cos\ pct))^2dx E ( t ) = 2 1 0 ∫ L (( A s in p c x + B cos p c x ) ( C s in p c t + D cos p c t ) ) 2 d x Differentiating with respect tot, we get
E ′ ( t ) = 1 2 ∫ 0 L ( C s i n p c t + D c o s p c t ) ( A s i n p c x + B c o s p c x ) ( C s i n p c t + D c o s p c t ) = ∫ 0 k u ( x , t ) u x x ( x , t ) d x E'(t)=\frac12 \intop_0^L(C\ sin\ pct+ D\ cos\ pct)(A\ sin\ pcx+ B\ cos\ pcx)(C\ sin\ pct+ D\ cos\ pct)=\intop _0^k u(x,t)u_{xx}(x,t)dx E ′ ( t ) = 2 1 ∫ 0 L ( C s in p c t + D cos p c t ) ( A s in p c x + B cos p c x ) ( C s in p c t + D cos p c t ) = ∫ 0 k u ( x , t ) u xx ( x , t ) d x
Integrating by part and using the boundary conditions, we find that
E ′ ( t ) ∫ 0 k u ( x , t ) v x x ( x , t ) d x = [ k u ( x , t ) u x ( x , t ) ] 0 L − ∫ 0 L k u x ( x , t ) 2 d x ≤ 0 E'(t) \intop_0^k u(x,t)v_{xx}(x,t)dx=[ku(x,t)u_x(x,t)]_0^L-\intop_0^Lku_x(x,t)^2dx \leq0 E ′ ( t ) ∫ 0 k u ( x , t ) v xx ( x , t ) d x = [ k u ( x , t ) u x ( x , t ) ] 0 L − ∫ 0 L k u x ( x , t ) 2 d x ≤ 0
Hence the energy E E E is decreasing. Since E ( 0 ) = 0 E(0) = 0 E ( 0 ) = 0 and E ( t ) ≥ 0 E(t)≥0 E ( t ) ≥ 0 , we get that E ≡ 0 E≡0 E ≡ 0 . his implies that u ( 0 , t ) ≡ 0 u(0,t)≡0 u ( 0 , t ) ≡ 0 for every t t t . Consequently,u 1 ( x , t ) = u 2 ( x , t ) u_1(x,t) =u_2(x,t) u 1 ( x , t ) = u 2 ( x , t ) for all x ∈ [ 0 , L ] x∈[0,L] x ∈ [ 0 , L ] and t ≥ 0 t≥0 t ≥ 0 .
Comments