Question #135652
The general solution u(x,t)=(A sin pcx +B cos pcx )(C sin pct+D cos pct ) with u(0,t)=0 and u(l,t)=0 gives..........
1
Expert's answer
2020-09-29T17:25:28-0400

Given the Dirichlet problem with the initial Dirichlet boundary conditions

u(0,t)=0=u(L,t)u(0,t)=0=u(L,t)

Then the problem has at most one solution.

To solve this,

Suppose that the problem has two solutions u1u_1 and u2u_2 . Setting u=u1u2u=u_1−u_2 , the function uu solves


{utkuxx=0x[0,L],t>0u(0,t)=0,u(L,t)=0t0u(x,0)=0x[0,L]\begin{cases} u_t-ku_{xx}=0 & x\in [0,L], t>0\\ u(0,t)=0, u(L,t)=0 & t \geq0 \\ u(x,0)=0 & x\in [0,L] \end{cases}

Define the energy


E(t)=120L((A sin pcx+B cos pcx)(C sin pct+D cos pct))2dxE(t)=\frac12 \intop_0^L((A\ sin\ pcx+ B\ cos\ pcx)(C\ sin\ pct+ D\ cos\ pct))^2dx

Differentiating with respect tot, we get

E(t)=120L(C sin pct+D cos pct)(A sin pcx+B cos pcx)(C sin pct+D cos pct)=0ku(x,t)uxx(x,t)dxE'(t)=\frac12 \intop_0^L(C\ sin\ pct+ D\ cos\ pct)(A\ sin\ pcx+ B\ cos\ pcx)(C\ sin\ pct+ D\ cos\ pct)=\intop _0^k u(x,t)u_{xx}(x,t)dx


Integrating by part and using the boundary conditions, we find that

E(t)0ku(x,t)vxx(x,t)dx=[ku(x,t)ux(x,t)]0L0Lkux(x,t)2dx0E'(t) \intop_0^k u(x,t)v_{xx}(x,t)dx=[ku(x,t)u_x(x,t)]_0^L-\intop_0^Lku_x(x,t)^2dx \leq0


Hence the energy EE is decreasing. Since E(0)=0E(0) = 0 and E(t)0E(t)≥0 , we get that E0E≡0 . his implies that u(0,t)0u(0,t)≡0 for every tt . Consequently,u1(x,t)=u2(x,t)u_1(x,t) =u_2(x,t) for all x[0,L]x∈[0,L] and t0t≥0 .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS