Question #135620

find the partial differential equations arising from z=xy+f(x^2+y^2)


1
Expert's answer
2020-09-28T15:46:36-0400

z=xy+f(x2+y2)Consideru=f(x2+y2)u=f(v),v=x2+y2uv=f(v)ux=uv×vx&uy=uv×vyuv=f(x2+y2)vx=2x&vy=2yzx=y+2xf(x2+y2)&zy=x+2yf(x2+y2)yzx=y2+2xyf(x2+y2)(1)xzy=x2+2xyf(x2+y2)(2)Subtracting(2)from(1),we have;yzxxzy=y2x2yzxxzy=y2x2is a partial differentialequation arising fromz\displaystyle z = xy + f(x^2 + y^2)\\ \textsf{Consider} \hspace{0.1cm} u = f(x^2 + y^2)\\ u = f(v), \hspace{0.1cm} v = x^2 + y^2\\ \frac{\partial u}{\partial v} = f'(v)\\ \therefore \frac{\partial u}{\partial x} = \frac{\partial u}{\partial v} \times \frac{\partial v}{\partial x}\hspace{0.1cm} \& \hspace{0.1cm} \frac{\partial u}{\partial y} = \frac{\partial u}{\partial v} \times \frac{\partial v}{\partial y}\\ \frac{\partial u}{\partial v} = f'(x^2 + y^2) \\ \frac{\partial v}{\partial x} = 2x \hspace{0.1cm} \& \hspace{0.1cm} \frac{\partial v}{\partial y} = 2y\\ \Rightarrow \frac{\partial z}{\partial x} = y + 2xf'(x^2 + y^2) \hspace{0.1cm}\&\hspace{0.1cm}\\ \frac{\partial z}{\partial y} = x + 2yf'(x^2 + y^2)\\ y\frac{\partial z}{\partial x} = y^2 + 2xyf'(x^2 + y^2) \hspace{0.5cm} (\textit{1}) \\ x\frac{\partial z}{\partial y} = x^2 + 2xyf'(x^2 + y^2)\hspace{0.5cm}(\textit{2})\\ \textsf{Subtracting}\hspace{0.1cm} (\textit{2}) \hspace{0.1cm} \textsf{from}\hspace{0.1cm} (\textit{1}), \hspace{0.1cm} \textsf{we have;}\\ y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = y^2 - x^2\\ \therefore y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = y^2 - x^2\\ \textsf{is a partial differential}\\\textsf{equation arising from}\hspace{0.1cm}z


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS