z=xy+f(x2+y2)Consideru=f(x2+y2)u=f(v),v=x2+y2∂v∂u=f′(v)∴∂x∂u=∂v∂u×∂x∂v&∂y∂u=∂v∂u×∂y∂v∂v∂u=f′(x2+y2)∂x∂v=2x&∂y∂v=2y⇒∂x∂z=y+2xf′(x2+y2)&∂y∂z=x+2yf′(x2+y2)y∂x∂z=y2+2xyf′(x2+y2)(1)x∂y∂z=x2+2xyf′(x2+y2)(2)Subtracting(2)from(1),we have;y∂x∂z−x∂y∂z=y2−x2∴y∂x∂z−x∂y∂z=y2−x2is a partial differentialequation arising fromz
Comments