Question #136025
(d^2y/dx2)-2(dy/dx)+2y=sin2x
1
Expert's answer
2020-10-01T12:05:13-0400

d2ydx22dydx+2y=sin2x\frac{d^2y}{dx^2}-2\frac{dy}{dx}+2y=\sin 2x


Let us solve a characteristic equation:


k22k+2=0k^2-2k+2=0

(k1)2+1=0(k-1)^2+1=0

(k1)2=1(k-1)^2=-1

k1=1+i,k2=1ik_1=1+i, k_2=1-i


The general solution is of the following form:

y(x)=ex(C1cosx+C2sinx)+yp(x),y(x)=e^x(C_1\cos x+C_2\sin x)+y_p(x), where yp(x)y_p(x) is a particular solution, C1,C2C_1, C_2 are arbitrary constants.


The particular solution has the following form:

yp(x)=Asin2x+Bcos2xy_p(x)=A\sin 2x+B\cos 2x, whrere AA and BB are constants.


dypdx=2Acos2x2Bsin2x\frac{dy_p}{dx}=2A\cos 2x-2B\sin 2x


d2ypdx2=4Asin2x4Bcos2x\frac{d^2y_p}{dx^2}=-4A\sin 2x-4B\cos 2x


Put founded derivatives in the differential equation:


4Asin2x4Bcos2x2(2Acos2x2Bsin2x)+2(Asin2x+Bcos2x)=sin2x-4A\sin 2x-4B\cos 2x-2(2A\cos 2x-2B\sin 2x)+2(A\sin 2x+B\cos 2x)=\sin 2x


(4A+4B+2A)sin2x+(4B4A+2B)cos2x=sin2x(-4A+4B+2A)\sin 2x+(-4B-4A+2B)\cos 2x=\sin 2x


(2A+4B)sin2x+(4A2B)cos2x=sin2x(-2A+4B)\sin 2x+(-4A-2B)\cos 2x=\sin 2x


Equating the corresponding coefficients, we obtain a system of equations:


{2A+4B=14A2B=0\begin{cases} -2A+4B=1\\ -4A-2B=0 \end{cases}


{2A+4B=1B=2A\begin{cases} -2A+4B=1\\ B=-2A \end{cases}


{10A=1B=2A\begin{cases} -10A=1\\ B=-2A \end{cases}


{A=110B=15\begin{cases} A=-\frac{1}{10}\\ B=\frac{1}{5} \end{cases}


Finally, the solution of the differential equation is the following:


y(x)=ex(C1cosx+C2sinx)110sin2x+15cos2x.y(x)=e^x(C_1\cos x+C_2\sin x)-\frac{1}{10}\sin 2x+\frac{1}{5}\cos 2x.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS