Question #135034
Solve Z^3=pqxy
1
Expert's answer
2020-10-01T15:06:45-0400

Using Charpit's method

we have the following equation,


dppqy+2pz=dqpqx+2qz=dz2pqxy=dxqxy=dypxy\frac{dp}{−pqy+2pz}=\frac{dq}{−pqx+2qz}=\frac{dz}{2pqxy}=\frac{dx}{qxy}=\frac{dy}{pxy}


using multipliers p ,q, x & y in 1st, 2nd, 4th & 5th equations and equating it with equation 3rd.



dz2pqxy=(pdx+qdy+xdp+ydq)pqxy+pqxypqxy+2pxzpqxy+2qyz\frac{dz}{2pqxy}=\frac{(pdx+qdy+xdp+ydq)}{pqxy+pqxy−pqxy+2pxz−pqxy+2qyz}


from equation

z3=pqxyz^3=pqxy

dz2z3=(pdx+qdy+xdp+ydq)2pxz+2qyz\frac{dz}{2z^3}=\frac{(pdx+qdy+xdp+ydq)}{2pxz+2qyz}


dz2z3=(d(px)+d(qy)2pxz+2qyz\frac{dz}{2z^3}=\frac{(d(px)+d(qy)}{2pxz+2qyz}


dzz2=d(px)+d(qy)px+qy\frac{dz}{z^2}=\frac{d(px)+d(qy)}{px+qy}


Integrate both the sides and we get


1z=log(px+qy)+logc-\frac{1}{z}=log(px+qy)+logc


1z=log((px+qy)c)\frac{1}{z}=-log((px+qy)c)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS