Question #135033
Solve Z(p^2+q^2)+px+qy=0
1
Expert's answer
2020-09-27T18:10:44-0400

Let f=z(p2+q2)+px+qyp^2+q^2)+px+qy


Using charpit's method,

dzpdfdpqdfdq\frac{dz}{-p\frac{df}{dp}-q\frac{df}{dq}} =dpdfdx+pdfdz\frac{dp}{\frac{df}{dx}+p\frac{df}{dz}} =dqdfdy+qdfdz=dxdfdp=dydfdq\frac{dq}{\frac{df}{dy}+q\frac{df}{dz}}=\frac{dx}{\frac{-df}{dp}}=\frac{dy}{\frac{-df}{dq}}


From second and third factor we have

dpdfdx+pdfdz=dqdfdy+qdfdz\frac{dp}{\frac{df}{dx}+p\frac{df}{dz}}=\frac{dq}{\frac{df}{dy}+q\frac{df}{dz}}

dpp+p(p2+q2)=dqq+q(p2+q2)\frac{dp}{p+p(p^2+q^2)}=\frac{dq}{q+q(p^2+q^2)}


dpp=dqq\frac{dp}{p}=\frac{dq}{q}


So by integrating ,we get

log(p)=log(q)log(a)log(p)=log(q)-log(a)


q=pa

Putting the value of p in given equation,

p2(1+a2)z+px+apy=0p^2(1+a^2)z+px+apy=0


p(1+a2)z+(x+ay)=0p(1+a^2)z+(x+ay)=0


so p=x+ayz(1+a2)-\frac{x+ay}{z(1+a^2)} so q=a(x+ay)(1+a2)z-\frac{a(x+ay)}{(1+a^2)z}


now we have to solve

dz=pdx+qdy

dz=x+ay(1+a2)zdxa(x+ay)1+a2)zdydz=-\frac{x+ay}{(1+a^2)z}dx-\frac{a(x+ay)}{1+a^2)z}dy


(1+a2)zdz=xdxa(ydx+xdy)a2ydy(1+a^2)zdz=-xdx-a(ydx+xdy)-a^2ydy

On integrating the above equation, we get


(1+a2)z22=x22axya2y22(1+a^2)\frac{z^2}{2}=-\frac{x^2}{2}-axy-a^2\frac{y^2}{2}


(1+a2)z=x22axya2y2(1+a^2)z=-x^2-2axy-a^2y^2

This is the solution.






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS