Let f=z(p2+q2)+px+qy
Using charpit's method,
−pdpdf−qdqdfdz =dxdf+pdzdfdp =dydf+qdzdfdq=dp−dfdx=dq−dfdy
From second and third factor we have
dxdf+pdzdfdp=dydf+qdzdfdq
p+p(p2+q2)dp=q+q(p2+q2)dq
pdp=qdq
So by integrating ,we get
log(p)=log(q)−log(a)
q=pa
Putting the value of p in given equation,
p2(1+a2)z+px+apy=0
p(1+a2)z+(x+ay)=0
so p=−z(1+a2)x+ay so q=−(1+a2)za(x+ay)
now we have to solve
dz=pdx+qdy
dz=−(1+a2)zx+aydx−1+a2)za(x+ay)dy
(1+a2)zdz=−xdx−a(ydx+xdy)−a2ydy
On integrating the above equation, we get
(1+a2)2z2=−2x2−axy−a22y2
(1+a2)z=−x2−2axy−a2y2
This is the solution.
Comments