q+xp-p2=0
∂p∂f =(x-2p)
∂q∂f =1
∂x∂f =p
∂y∂f =0
∂z∂f =0
(−∂f/∂p)dx =(−∂f/∂p)dy =(−p∂f/∂p−q∂f/∂q)dz =
(∂f/∂x+p∂f/∂z)dp +(∂f/∂y+q∂f/∂z)dq =0(∂∅)
(−(x−2p))dx =
(−1)dy=(−p(x−2p)−q)dz=pdp=0dq=0(∂∅)
=(−1)dy=pdp
log p=-y+log a
p=ae-y
q+xae-y=(ae-y)2
q=a2 e-2y-xae-y
dz=pdx+qdy
dz=ae-y dx+a2 e-2y-xae-y dy
dz=a e-y dx-xe-y dy)+a2 e-2y dy
Using −p(x−2p)−q=p2=a2e2y the z and p fractions combine to dz=pdp which integrates to
z=axe−y−21a2e−2y+b
Comments