Question #129865
q+xp=p^2
1
Expert's answer
2020-08-24T19:09:11-0400

q+xp-p2=0


fp\frac{∂f} {∂p} =(x-2p)


fq\frac{∂f} {∂q} =1


fx\frac{∂f} {∂x} =p


fy\frac{∂f} {∂y} =0


fz\frac{∂f} {∂z} =0


dx(f/p)\frac{dx} {(-∂f/∂p)} =dy(f/p)\frac{dy} {(-∂f/∂p)} =dz(pf/pqf/q)\frac{dz} {(-p ∂f/∂p-q ∂f/∂q)} =


dp(f/x+pf/z)\frac {dp} {(∂f/∂x+p ∂f/∂z)} +dq(f/y+qf/z)\frac{dq} {(∂f/∂y+q ∂f/∂z)} =()0\frac{(∂∅)} {0}


dx((x2p))\frac{dx} {(-(x-2p) )} =


dy(1)=dz(p(x2p)q)=dpp=dq0=()0\frac{dy} {(-1)} =\frac{dz} {(-p(x-2p)-q)} =\frac{dp} {p} =\frac{dq} {0} =\frac{(∂∅)} {0}


=dy(1)=dpp\frac {dy} {(-1)} =\frac{dp} {p}


log ⁡p=-y+log ⁡a


p=ae-y


q+xae-y=(ae-y)2


q=a2 e-2y-xae-y


dz=pdx+qdy


dz=ae-y dx+a2 e-2y-xae-y dy


dz=a e-y dx-xe-y dy)+a2 e-2y dy


Using −p(x−2p)−q=p2=a2e2y the z and p fractions combine to dz=pdp which integrates to


z=axey12a2e2y+bz=axe^{-y}-\frac{1}{2}a^2e^{-2y}+b


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS