Solution Write the differential equation in standard form: y′′−x22x+1y′+x2y2=0
We have P(x)=−x22x+1 and Q(x)=x21 , so x=0 is a singular point. Taking limits we get limx→0xP(x)=1 and limx→0x2Q(x)=0 . Therefore x=0 is a regular singular point. We look for a solution of the form y(x)=∑n=0∞anxn+r . Plug the series into the equation to get
y(x)=∑n=0∞anxn+ry′=∑n=0∞(n+r)anxn+r−1y′′=∑n=0∞(n+r)(n+r−1)anxn+r−2
y′′=x2∑n=0∞(n+r)(n+r−1)anxn+r−2−2x∑n=0∞(n+r)anxn+r−1−∑n=0∞(n+r)anxn+r−1+(∑n=0∞anxn+r)2=0
⟹y′′=∑n=0∞(n+r)(n+r−1)anxn+r−∑n=0∞2(n+r)anxn+r−∑n=0∞(n+r)anxn+r−1+(∑n=0∞anxn+r)2=0
Upon re-arrangement we get
(r(r−1)−2r)a0xr+∑n=0∞{[(n+r+1)(n+r+3)]qn+1−(n+r−1)an}xn+r
Equating the powers of x yields
(r2−3r)a0=0, an+1=n+r+3an,for n=0, 1, ....
But a0=0 implies that r=0,3 . Solving for the an’s we get
For r=0
an+1=n+3ana1=3a0a2=4a1=4⋅3a0=4⋅3⋅2⋅1a0⋅2⋅1=4!2!a0a3=5a2=5⋅4⋅3a0=5⋅4⋅3⋅2⋅1a0⋅2⋅1=5!2!a0...an=(n+3)!2!a0
For r=3
an+1=n+6ana1=6a0a2=7a1=7⋅6a0=7⋅6!a0a3=8a2=8⋅7⋅6a0=8⋅7⋅6!a0...an=(n+6)!a0
Two linearly independent Frobenius series (with a0=1 ) are given by
y1(x)=n=0∑∞anxn=n=0∑∞(n+3)!2!xn, y2(x)=n=0∑∞anxn+3=x3n=0∑∞(n+6)!xn
Comments