Question #129210

x²y"-(2x+1)y'+y²=0


1
Expert's answer
2020-08-18T18:39:46-0400
SolutionSolution

Write the differential equation in standard form: y2x+1x2y+y2x2=0y''-\frac{2x+1}{x^2}y'+\frac{y^2}{x^2}=0


We have P(x)=2x+1x2P(x)=-\frac{2x+1}{x^2} and Q(x)=1x2Q(x)=\frac{1}{x^2} , so x=0x= 0 is a singular point. Taking limits we get limx0xP(x)=1lim_{x→0}xP(x) = 1 and limx0x2Q(x)=0lim_{x→0}x^2Q(x) = 0 . Therefore x=0x= 0 is a regular singular point. We look for a solution of the form y(x)=n=0anxn+ry(x) =∑^∞_{n=0}a_nx^{n+r} . Plug the series into the equation to get


y(x)=n=0anxn+ry=n=0(n+r)anxn+r1y=n=0(n+r)(n+r1)anxn+r2y(x) =∑^∞_{n=0}a_nx^{n+r}\\ y' =∑^∞_{n=0}(n+r)a_nx^{n+r-1}\\ y'' =∑^∞_{n=0}(n+r)(n+r-1)a_nx^{n+r-2}


y=x2n=0(n+r)(n+r1)anxn+r22xn=0(n+r)anxn+r1n=0(n+r)anxn+r1+(n=0anxn+r)2=0y'' =x^2∑^∞_{n=0}(n+r)(n+r-1)a_nx^{n+r-2}-2x∑^∞_{n=0}(n+r)a_nx^{n+r-1}-∑^∞_{n=0}(n+r)a_nx^{n+r-1}+(∑^∞_{n=0}a_nx^{n+r})^2=0


    y=n=0(n+r)(n+r1)anxn+rn=02(n+r)anxn+rn=0(n+r)anxn+r1+(n=0anxn+r)2=0\implies y'' =∑^∞_{n=0}(n+r)(n+r-1)a_nx^{n+r}-∑^∞_{n=0}2(n+r)a_nx^{n+r}-∑^∞_{n=0}(n+r)a_nx^{n+r-1}+(∑^∞_{n=0}a_nx^{n+r})^2=0


Upon re-arrangement we get


(r(r1)2r)a0xr+n=0{[(n+r+1)(n+r+3)]qn+1(n+r1)an}xn+r(r(r-1)-2r)a_0x^r+\sum_{n=0}^\infin \{[(n+r+1)(n+r+3)]q_{n+1}-(n+r-1)a_n\}x^{n+r}


Equating the powers of x yields



(r23r)a0=0,  an+1=ann+r+3,for n=0, 1, ....(r^2-3r)a_0=0,\ \ a_{n+1}=\frac{a_n}{n+r+3}, for\ n=0,\ 1,\ ....

But a00a_0 \ne 0 implies that r=0,3r= 0,3 . Solving for the ansa_n’s we get

For r=0

an+1=ann+3a1=a03a2=a14=a043=a0214321=2!4!a0a3=a25=a0543=a02154321=2!5!a0...an=2!(n+3)!a0a_{n+1}=\frac{a_n}{n+3}\\ a_1=\frac{a_0}{3}\\ a_2=\frac{a_1}{4}=\frac{a_0}{4 \cdot 3}=\frac{a_0 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{2!}{4!}a_0 \\ a_3=\frac{a_2}{5}=\frac{a_0}{5 \cdot 4 \cdot 3}=\frac{a_0 \cdot 2 \cdot 1}{5 \cdot4 \cdot 3 \cdot 2 \cdot 1}=\frac{2!}{5!}a_0 \\ .\\ .\\ .\\ a_n=\frac{2!}{(n+3)!}a_0


For r=3

an+1=ann+6a1=a06a2=a17=a076=a076!a3=a28=a0876=a0876!...an=a0(n+6)!a_{n+1}=\frac{a_n}{n+6}\\ a_1=\frac{a_0}{6}\\ a_2=\frac{a_1}{7}=\frac{a_0}{7 \cdot 6}=\frac{a_0}{7 \cdot 6!}\\ a_3=\frac{a_2}{8}=\frac{a_0}{8 \cdot 7 \cdot 6}=\frac{a_0}{8 \cdot7 \cdot 6!} \\ .\\ .\\ .\\ a_n=\frac{a_0}{(n+6)!}


Two linearly independent Frobenius series (with a0=1a_0= 1 ) are given by



y1(x)=n=0anxn=n=02!(n+3)!xn, y2(x)=n=0anxn+3=x3n=0xn(n+6)!y_1(x)=\sum_{n=0}^\infin a_nx^n=\sum_{n=0}^\infin \frac{2!}{(n+3)!}x_n,\ y_2(x)=\sum_{n=0}^\infin a_nx^{n+3}=x^3\sum_{n=0}^\infin \frac{x_n}{(n+6)!}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS