We know that exy+y=x−1e^{xy}+y = x-1exy+y=x−1 or exy+y−x+1=0e^{xy}+y-x+1 = 0exy+y−x+1=0 . Let us take the derivative of the last expression with respect to x:
exy(y+xdydx)+dydx−1+0=0.e^{xy}\left( y+x\dfrac{dy}{dx}\right) + \dfrac{dy}{dx} - 1 + 0 = 0.exy(y+xdxdy)+dxdy−1+0=0. Therefore, dydx=1−yexyxexy+1=e−xy−yx+e−xy.\dfrac{dy}{dx} = \dfrac{1-ye^{xy}}{xe^{xy}+1} = \dfrac{e^{-xy}-y}{x+e^{-xy}}.dxdy=xexy+11−yexy=x+e−xye−xy−y.
We can see that e−xy−ye^{-xy}-ye−xy−y should be equal to e−xy+aye^{-xy}+aye−xy+ay , therefore a=−1.a=-1.a=−1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment