Question #108029
Find a set of solutions for:
2(x-y)dx+(3x-y-1)dy=0

(2x+y-4)dx+(x-3y+12)dy=0

dy/dx=tanycotx - secycosx
1
Expert's answer
2020-04-04T15:58:47-0400

1)

2(xy)dx+(3xy1)dy=0y=2(yx)3xy12(x-y)dx+(3x-y-1)dy=0\\ y'=\frac{2(y-x)}{3x-y-1}

Solving the system

{y0x0=03x0y01=0{x0=12y0=12\left \{ \begin{matrix} y_0-x_0=0 \\ 3x_0-y_0-1=0 \end{matrix}\right.\\ \left\{\begin{matrix} x_0=\frac{1}{2} \\ y_0=\frac{1}{2} \end{matrix}\right.

We shall replace

{x=t+12y=z+12y=z\left\{\begin{matrix} x=t+\frac{1}{2} \\ y=z+\frac{1}{2} \end{matrix}\right.\\ y'=z'

where tt is a new independent variable, zz is a new function.

Substitute into equation

z=2(z+12t12)3t+32z121z=2(zt)3tzz'=\frac{2(z+\frac{1}{2}-t-\frac{1}{2})}{3t+\frac{3}{2}-z-\frac{1}{2}-1}\\ z'=\frac{2(z-t)}{3t-z}

We shall replace

zt=u(t),z=tu,z=tu+u\frac{z}{t}=u(t), z=t\cdot u, z'= tu'+u

then

tu+u=2(tut)3ttutu+u=2u23utu=2u23uutu=2u23u+u23utu=u2u23u3u(u+1)(u2)du=dtt(431u+1+131u2)dy=dtt43lnu+1+13lnu2=lnt+13lncu2(u+1)4=ct3,u+1=0tu'+u=\frac{2(tu-t)}{3t-tu}\\ tu'+u=\frac{2u-2}{3-u}\\ tu'=\frac{2u-2}{3-u}-u\\ tu'=\frac{2u-2-3u+u^2}{3-u}\\ tu'=\frac{u^2-u-2}{3-u}\\ \frac{3-u}{(u+1)(u-2)}du=\frac{dt}{t}\\ \int(-\frac{4}{3}\frac{1}{u+1}+\frac{1}{3}\frac{1}{u-2})dy=\int\frac{dt}{t}\\ -\frac{4}{3}ln|u+1|+\frac{1}{3}ln|u-2|=ln|t|+\frac{1}{3}ln|c|\\ \frac{u-2}{(u+1)^4}=ct^3, u+1=0

where u=y12x12u=\frac{y-\frac{1}{2}}{x-\frac{1}{2}}

Then solutions of the equation are

y12x122(y12x12+1)4=c(x12)3,y12x12+1=0\frac{\frac{y-\frac{1}{2}}{x-\frac{1}{2}}-2}{(\frac{y-\frac{1}{2}}{x-\frac{1}{2}}+1)^4}=c(x-\frac{1}{2})^3,\\ \frac{y-\frac{1}{2}}{x-\frac{1}{2}}+1=0


2)

(2x+y4)dx+(x3y+12)dy=0y=2x+y4x3y+12(2x+y-4)dx+(x-3y+12)dy=0\\ y'=-\frac{2x+y-4}{x-3y+12}

Solving the system

{2x0+y04=0x03y0+12=0{x0=0y0=4\left\{\begin{matrix} 2x_0+y_0-4=0 \\ x_0-3y_0+12=0 \end{matrix}\right.\\ \left\{\begin{matrix} x_0=0 \\ y_0=4 \end{matrix}\right.

We shall replace

{x=ty=z+4y=zz=2t+z+44t3z12+12z=2t+zt3z\left\{\begin{matrix} x=t \\ y=z+4 \end{matrix}\right.\\ y'=z'\\ z'=\frac{2t+z+4-4}{t-3z-12+12}\\ z'=-\frac{2t+z}{t-3z}

We shall replace

zt=u(t),z=tu,z=tu+u\frac{z}{t}=u(t), z=t\cdot u, z'= tu'+u

then

tu+u=2t+tu3tuttu=2+u3u1utu=2+u3u2+u3u1tu=3u2+2u+23u13u13u22u2du=dtt12d(3u22u2)3u22u2du=dtt12ln3u22u2=lnt+12lnc13u22u2=ct23u22u2=0tu'+u=\frac{2t+tu}{3tu-t}\\ tu'=\frac{2+u}{3u-1}-u\\ tu'=\frac{2+u-3u^2+u}{3u-1}\\ tu'=\frac{-3u^2+2u+2}{3u-1}\\ -\frac{3u-1}{3u^2-2u-2}du=\frac{dt}{t}\\ -\frac{1}{2}\int\frac{d(3u^2-2u-2)}{3u^2-2u-2}du=\frac{dt}{t}\\ -\frac{1}{2}ln|3u^2-2u-2|=ln|t|+\frac{1}{2}ln|c|\\ \frac{1}{3u^2-2u-2}=ct^2\\ 3u^2-2u-2=0

where u=y4xu=\frac{y-4}{x}

Then solutions of the equation are

13(y4x)22y4x2=cx23(y4x)22y4x2=0\frac{1}{3(\frac{y-4}{x})^2-2\cdot\frac{y-4}{x}-2}=cx^2\\ 3(\frac{y-4}{x})^2-2\cdot \frac{y-4}{x}-2=0


3)

dydx=tanycotxsecycosxdydx=sinycosycosxsinx1cosycosxdydx=sinycosxsinxcosxsinxcosy(sinxsiny)cosxdx+sinxcosydy=0\frac{dy}{dx}=\tan y\cot x-\sec y\cos x\\ \frac{dy}{dx}=\frac{\sin y}{\cos y}\frac{\cos x}{\sin x}-\frac{1}{\cos y}\cos x\\ \frac{dy}{dx}=\frac{\sin y\cos x-\sin x \cos x}{\sin x\cos y}\\ (\sin x-\sin y)\cos x dx+\sin x \cos y dy=0

Put u=siny,du=cosydyu=\sin y, du=\cos ydy

Substituting, we get

(sinxu)cosxdx+sinxdu=0dudxucosxsinx=cosx(\sin x-u)\cos xdx+\sin x du=0\\ \frac{du}{dx}-u\cdot\frac{\cos x}{\sin x}=-\cos x

The equation is first - order linear in uu

The integrating factor is

I=ecosxsinxdx=elnsinx=1sinxI=e^{-\int\frac{\cos x}{\sin x}dx}=e^{-\ln\sin x}=\frac{1}{\sin x}

Hence

u1sinx=cosxsinxdx=lnsinx+cu\frac{1}{\sin x}=-\int\frac{\cos x}{\sin x}dx=-ln|\sin x|+c


solve for uu

u=sinxlnsinx+csinxu=-\sin x\ln|\sin x|+c\sin x

Put yy back

siny=sinxlnsinx+csinx\sin y=-\sin x\ln|\sin x|+c\sin x



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS