1)
2(x−y)dx+(3x−y−1)dy=0y′=3x−y−12(y−x)
Solving the system
{y0−x0=03x0−y0−1=0{x0=21y0=21
We shall replace
{x=t+21y=z+21y′=z′
where t is a new independent variable, z is a new function.
Substitute into equation
z′=3t+23−z−21−12(z+21−t−21)z′=3t−z2(z−t)
We shall replace
tz=u(t),z=t⋅u,z′=tu′+u
then
tu′+u=3t−tu2(tu−t)tu′+u=3−u2u−2tu′=3−u2u−2−utu′=3−u2u−2−3u+u2tu′=3−uu2−u−2(u+1)(u−2)3−udu=tdt∫(−34u+11+31u−21)dy=∫tdt−34ln∣u+1∣+31ln∣u−2∣=ln∣t∣+31ln∣c∣(u+1)4u−2=ct3,u+1=0
where u=x−21y−21
Then solutions of the equation are
(x−21y−21+1)4x−21y−21−2=c(x−21)3,x−21y−21+1=0
2)
(2x+y−4)dx+(x−3y+12)dy=0y′=−x−3y+122x+y−4
Solving the system
{2x0+y0−4=0x0−3y0+12=0{x0=0y0=4
We shall replace
{x=ty=z+4y′=z′z′=t−3z−12+122t+z+4−4z′=−t−3z2t+z
We shall replace
tz=u(t),z=t⋅u,z′=tu′+u
then
tu′+u=3tu−t2t+tutu′=3u−12+u−utu′=3u−12+u−3u2+utu′=3u−1−3u2+2u+2−3u2−2u−23u−1du=tdt−21∫3u2−2u−2d(3u2−2u−2)du=tdt−21ln∣3u2−2u−2∣=ln∣t∣+21ln∣c∣3u2−2u−21=ct23u2−2u−2=0
where u=xy−4
Then solutions of the equation are
3(xy−4)2−2⋅xy−4−21=cx23(xy−4)2−2⋅xy−4−2=0
3)
dxdy=tanycotx−secycosxdxdy=cosysinysinxcosx−cosy1cosxdxdy=sinxcosysinycosx−sinxcosx(sinx−siny)cosxdx+sinxcosydy=0
Put u=siny,du=cosydy
Substituting, we get
(sinx−u)cosxdx+sinxdu=0dxdu−u⋅sinxcosx=−cosx
The equation is first - order linear in u
The integrating factor is
I=e−∫sinxcosxdx=e−lnsinx=sinx1
Hence
usinx1=−∫sinxcosxdx=−ln∣sinx∣+c
solve for u
u=−sinxln∣sinx∣+csinx
Put y back
siny=−sinxln∣sinx∣+csinx
Comments