1) Find a set of solutions for
2(x−y)dx+(3x−y−1)dy=0
y′=3x−y−12(y−x)
Solving the system
y0−x0=0
3x0−y0−1=0
x0=21,y0=21
We shall replace
x=t+21
y=z+21
y′=z′
where t is a new independent variable, z is a new function.Substitute into equation
z′=3t+23−z−21−12(z+21−t−21)
z′=3t−z2(z−t)
we shall replace
tz=u(t),z=t.u.z′=tu′+u
then,
tu′+u=3t−tu2(tu−t)
tu′+u=3−u2u−2
tu′=3−u2u−2−u
tu′=3−u2u−2−3u+u2
(u+1)(u−2)3−udu=tdt
∫(−34u+11+31u−21)du=∫tdt
−34ln∣u+1∣+31ln∣u−2∣=ln∣t∣+31ln∣c∣
(u+1)4(u−2)=ct3,u+1=0
where u=x−21y−21
The solution of the equation are
(x−21y−21)4+1x−21y−21−2 =c(x−21)3
x−21y−21+1=0
2) Find a set of solutions for
(2x+y−4)dx+(x−3y+12)dy=0y′=−x−3y+122x+y−4
Solving the system
2x0+y0−4=0
x0−3y0+12=0
x0=0,y0=4
we shall replace
x=t,y=z+4
y′=z′
z′=−t−3z−12+122t+z+4−4
z′=−t−3z2t+z
we shall replace
tz=u(t) ,z=t.u,z′=tu′+u
then
tu′+u=3tu−t2t+tu
tu′=3u−12+u−3u2+u
−3u2−2u−u3u−1du=tdt
−21∫3u2−2u−2d(3u2−2u−2)du=∫tdt
−21ln∣3u2−2u−2∣=ln∣t∣+21ln∣c∣
3u2−2u−21=ct2
3u2−2u−2=0
where u=xy−4
Then solution of the above equation are
3(xy−4)2−2∗xy−4−21=cx2
3(xy−4)2−2∗xy−4−2=0
3) Find a set of solutions for
dxdy=tanycotx−secycosxdxdy=cosysinysinxcosx−cosy1cosxdxdy=sinxcosysinycosx−sinxcosx(sinx−siny)cosxdx+sinxcosydy=0
put u=siny,du=cosydy
Substituting, we get
(sinx−u)cosxdx+sinxdu=0
(sinx−u)cosxdx+sinxdu=0dxdu−u⋅sinxcosx=−cosx
The equation is first - order linear in u The integrating factor is
I=e−∫sinxcosxdx=e−lnsinx=sinx1
Hence
usinx1=−∫sinxcosxdx=−ln∣sinx∣+c
solve for u
u=−sinxln∣sinx∣+csinx
Put y back
siny=−sinxln∣sinx∣+csinx
Comments