Question #108023
Find a set of solutions for:
2(x-y)dx+(3x-y-1)dy=0

(2x+y-4)dx+(x-3y+12)dy=0

dy/dx=tanycotx - secycosx
1
Expert's answer
2020-04-06T07:58:23-0400

1) Find a set of solutions for

2(xy)dx+(3xy1)dy=02(x-y)dx+(3x-y-1)dy=0\\

y=2(yx)3xy1y'={2(y-x) \above{2pt} 3x-y-1}

Solving the system

y0x0=0y_ 0 ​ −x_ 0 ​ =0

3x0y01=03x_0-y_0-1=0

x0=12,y0=12x_0={1 \above{2pt} 2}, y_0={1 \above{2pt} 2}

We shall replace

x=t+12x=t+{1 \above{2pt} 2}

y=z+12y=z+{1\above{2pt} 2}

y=zy'=z'

where t is a new independent variable,  z is a new function.Substitute into equation

z=2(z+12t12)3t+32z121z'={2(z+ {1 \above{2pt} 2}-t- {1\above{2pt} 2}) \above{2pt} 3t+ {3 \above{2pt} 2} -z- {1 \above{2pt} 2}-1 }

z=2(zt)3tzz'={2(z-t) \above{2pt} 3t-z}

we shall replace

zt=u(t),z=t.u.z=tu+u{z \above{2pt} t}=u(t),z=t.u. z'=tu'+u

then,

tu+u=2(tut)3ttutu'+u={2(tu-t) \above{2pt} 3t-tu}

tu+u=2u23utu'+u={2u-2\above{2pt} 3-u}

tu=2u23uutu'={2u-2 \above{2pt} 3-u}-u

tu=2u23u+u23utu'={2u-2-3u+u^2 \above{2pt} 3-u}

3u(u+1)(u2)du=dtt{3-u \above{2pt} (u+1)(u-2)} du={dt \above{2pt} t}

(431u+1+131u2)du=dtt\int (-{4 \above{2pt} 3}{1 \above{2pt} u+1}+{1 \above{2pt} 3}{1 \above{2pt} u-2})du=\int {dt \above{2pt} t}

43lnu+1+13lnu2=lnt+13lnc-{4 \above{2pt} 3}ln|u+1|+{1 \above{2pt} 3}ln|u-2|=ln|t|+{1 \above{2pt} 3} ln|c|

(u2)(u+1)4=ct3,u+1=0{(u-2) \above{2pt} (u+1)^4}=ct^3 ,u+1=0

where u=y12x12u={y- {1\above{2pt} 2}\above{2pt} x-{1 \above{2pt} 2} }

The solution of the equation are

y12x122(y12x12)4+1{ {y- {1 \above{2pt} 2}\above{2pt} x- {1 \above{2pt} 2} } -2 \above{2pt}( {y- {1 \above{2pt} 2}\above{2pt} x- {1 \above{2pt} 2} } )^{4}+1 } =c(x12)3=c(x-{1 \above{2pt} 2})^{3}

y12x12+1=0{y- {1\above{2pt} 2}\above{2pt} x-{1 \above{2pt} 2} }+1=0

2) Find a set of solutions for

(2x+y4)dx+(x3y+12)dy=0y=2x+y4x3y+12(2x+y-4)dx+(x-3y+12)dy=0\\ y'=-\frac{2x+y-4}{x-3y+12}

Solving the system

2x0+y04=02x_0+y_0-4=0

x03y0+12=0x _0-3y_0+12=0

x0=0,y0=4x_0=0, y_0=4

we shall replace

x=t,y=z+4x=t , y=z+4

y=zy'=z'

z=2t+z+44t3z12+12z'=-{2t+z+4-4 \above{2pt} t-3z-12+12}

z=2t+zt3zz'=-{2t +z\above{2pt} t-3z}

we shall replace

zt=u(t){z \above{2pt} t}=u(t) ,z=t.u,z=tu+uz=t.u, z'=tu'+u

then

tu+u=2t+tu3tuttu'+u={2t+tu \above{2pt} 3tu-t}

tu=2+u3u2+u3u1tu'={2+u-3u^2+u \above{2pt} 3u-1}

3u13u22uudu=dtt-{3u-1 \above{2pt} 3u^2-2u-u} du={dt\above{2pt} t}

12d(3u22u2)3u22u2du=dtt-{1 \above{2pt} 2}\int {d(3u^2-2u-2)\above{2pt} 3u^2-2u-2}du=\int{dt\above{2pt} t}

12ln3u22u2=lnt+12lnc-{1\above{2pt} 2}ln|3u^2-2u-2|=ln|t|+{1 \above{2pt} 2}ln|c|

13u22u2=ct2{1 \above{2pt} 3u^2-2u-2}=ct^2

3u22u2=03u^2-2u-2=0

where u=y4xu={y-4\above{2pt} x}

Then solution of the above equation are

13(y4x)22y4x2=cx2{1 \above{2pt} 3( {y-4 \above{2pt} x} )^{2}-2* {y-4\above{2pt} x}-2 }=cx^2

3(y4x)22y4x2=03({y-4 \above{2pt} x})^2-2*{y-4\above{2pt} x}-2=0

3) Find a set of solutions for

dydx=tanycotxsecycosxdydx=sinycosycosxsinx1cosycosxdydx=sinycosxsinxcosxsinxcosy(sinxsiny)cosxdx+sinxcosydy=0\frac{dy}{dx}=\tan y\cot x-\sec y\cos x\\ \frac{dy}{dx}=\frac{\sin y}{\cos y}\frac{\cos x}{\sin x}-\frac{1}{\cos y}\cos x\\ \frac{dy}{dx}=\frac{\sin y\cos x-\sin x \cos x}{\sin x\cos y}\\ (\sin x-\sin y)\cos x dx+\sin x \cos y dy=0

putput u=siny,du=cosydyu=\sin y, du=\cos ydy

Substituting, we get

(sinxu)cosxdx+sinxdu=0(sinx−u)cosxdx+sinxdu=0

(sinxu)cosxdx+sinxdu=0dudxucosxsinx=cosx(\sin x-u)\cos xdx+\sin x du=0\\ \frac{du}{dx}-u\cdot\frac{\cos x}{\sin x}=-\cos x

The equation is first - order linear in u The integrating factor is

I=ecosxsinxdx=elnsinx=1sinxI=e^{-\int\frac{\cos x}{\sin x}dx}=e^{-\ln\sin x}=\frac{1}{\sin x} ​

Hence

u1sinx=cosxsinxdx=lnsinx+cu\frac{1}{\sin x}=-\int\frac{\cos x}{\sin x}dx=-ln|\sin x|+c

solve for u

u=sinxlnsinx+csinxu=-\sin x\ln|\sin x|+c\sin x

Put y back

siny=sinxlnsinx+csinx\sin y=-\sin x\ln|\sin x|+c\sin x





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS