Question #108014
Verify that the equations
i) z = √(2x+a) + √(2y+b) and
ii) z^2 + µ = 2(1+λ^-1) (x+λy)
are both complete integrals of the PDE .
z = 1/p + 1/q Also show that the complete integral

(ii) is the envelope of one parameter sub-system obtained by taking
b = -a/λ - µ/1+λ in the solution (i)
1
Expert's answer
2020-04-06T17:55:04-0400

QUESTION (1i)



z=2x+a+2y+pp=zx=222x+a12x+aq=zy=222y+b12y+bz=\sqrt{2x+a}+\sqrt{2y+p}\longrightarrow\\[0.3cm] p=\frac{\partial z}{\partial x}=\frac{2}{2\sqrt{2x+a}}\equiv\frac{1}{\sqrt{2x+a}}\\[0.3cm] q=\frac{\partial z}{\partial y}=\frac{2}{2\sqrt{2y+b}}\equiv\frac{1}{\sqrt{2y+b}}\\[0.3cm]

Then,



1p+1q=112x+a+112y+b1p+1q=2x+a+2y+bz\frac{1}{p}+\frac{1}{q}=\frac{1}{\displaystyle\frac{1}{\sqrt{2x+a}}}+\frac{1}{\displaystyle\frac{1}{\sqrt{2y+b}}}\longrightarrow\\[0.3cm] \frac{1}{p}+\frac{1}{q}=\sqrt{2x+a}+\sqrt{2y+b}\equiv z

Conclusion,



z=2x+a+2y+p1p+1q=z\boxed{z=\sqrt{2x+a}+\sqrt{2y+p}\to\frac{1}{p}+\frac{1}{q}=z}



QUESTION (1ii)



z2+μ=2(1+λ1)(x+λy)2zzx=2(1+λ1)p=zx=1+λ1z=λ+1zλ2zzy=2(1+λ1)λq=zy=λ+1zz^2+\mu=2\left(1+\lambda^{-1}\right)(x+\lambda y)\longrightarrow\\[0.3cm] 2z\cdot\frac{\partial z}{\partial x}=2\left(1+\lambda^{-1}\right)\longrightarrow\\[0.3cm] p=\frac{\partial z}{\partial x}=\frac{1+\lambda^{-1}}{z}=\frac{\lambda+1}{z\lambda}\\[0.3cm] 2z\cdot\frac{\partial z}{\partial y}=2\left(1+\lambda^{-1}\right)\lambda\longrightarrow\\[0.3cm] q=\frac{\partial z}{\partial y}=\frac{\lambda+1}{z}\\[0.3cm]



Then,



1p+1q=1λ+1zλ+1λ+1z=zλλ+1+zλ+11p+1q=z(λ+1)λ+1z\frac{1}{p}+\frac{1}{q}=\frac{1}{\displaystyle\frac{\lambda+1}{z\lambda}}+\frac{1}{\displaystyle\frac{\lambda+1}{z}}=\frac{z\lambda}{\lambda+1}+\frac{z}{\lambda+1}\\[0.3cm] \frac{1}{p}+\frac{1}{q}=\frac{z\left(\lambda+1\right)}{\lambda+1}\equiv z

Conclusion,



z2+μ=2(1+λ1)(x+λy)1p+1q=z\boxed{z^2+\mu=2\left(1+\lambda^{-1}\right)(x+\lambda y)\longrightarrow\frac{1}{p}+\frac{1}{q}=z}


QUESTION 2

Suppose that b=b(a;λ;μ)b=b(a;\lambda;\mu) , then



a2x+a+2y+bz=0122x+a+122y+bba=02y+b=2x+aba\frac{\partial }{\partial a}\left|\sqrt{2x+a}+\sqrt{2y+b}-z=0\right.\longrightarrow\\[0.3cm] \frac{1}{2\sqrt{2x+a}}+\frac{1}{2\sqrt{2y+b}}\cdot\frac{\partial b}{\partial a}=0\longrightarrow\\[0.3cm] \boxed{\sqrt{2y+b}=-\sqrt{2x+a}\cdot\frac{\partial b}{\partial a}}

Suppose that



b(a;λ;μ)=aλ+Cba=1λb(a;\lambda;\mu)=-\frac{a}{\lambda}+C\longrightarrow\frac{\partial b}{\partial a}=-\frac{1}{\lambda}

Then,



2y+b=2x+a(1λ)2y+b=1λ2x+a[2y+b]2=[1λ2x+a]22y=2x+aλ2b\sqrt{2y+b}=-\sqrt{2x+a}\cdot\left(-\frac{1}{\lambda}\right)\longrightarrow\\[0.3cm] \boxed{\sqrt{2y+b}=\frac{1}{\lambda}\cdot\sqrt{2x+a}}\\[0.3cm] \left[\sqrt{2y+b}\right]^2=\left[\frac{1}{\lambda}\cdot\sqrt{2x+a}\right]^2\longrightarrow\\[0.3cm] \boxed{2y=\frac{2x+a}{\lambda^2}-b}



Substituting the found relationship in the first equation and express z2z^2 :



z=2x+a+2y+bz=2x+a+1λ2x+az2=(1+1λ)2(2x+a)z=\sqrt{2x+a}+\sqrt{2y+b}\longrightarrow\\[0.3cm] z=\sqrt{2x+a}+\frac{1}{\lambda}\cdot\sqrt{2x+a}\longrightarrow\\[0.3cm] \boxed{z^2=\left(1+\frac{1}{\lambda}\right)^2\cdot(2x+a)}

Substituting the found relationship in the second equation :



z2+μ=2(1+1λ)(x+λy)(1+λλ)2(2x+a)+μ=21+λλ(x+λy)÷1(1+λ)22x+aλ2+μ(1+λ)2=2(x+λy)λ(1+λ)2x+aλ2+μ(1+λ)2=2y(1+λ)+2xλ(1+λ)2x+aλ2+μ(1+λ)2=2x+aλ2b(1+λ)+2xλ(1+λ)2x+aλ2+μ(1+λ)2=(2x+a)λ2bλ2(1+λ)+2xλ(1+λ)2x+aλ2+μ(1+λ)2=(2x+a)λ2(1+λ)λ2bλ2(1+λ)+2xλ(1+λ)2x+aλ2+μ(1+λ)22xλ(1+λ)(2x+a)λ2(1+λ)=b(1+λ)(1+λ)(2x+a)2xλ(2x+a)λ2(1+λ)+μ(1+λ)2=b(1+λ)2x+a+2xλ+aλ2xλ2xaλ2(1+λ)+μ(1+λ)2=b(1+λ)aλλ2(1+λ)+μ(1+λ)2=b(1+λ)×(1+λ)b=aλμ(1+λ)z^2+\mu=2\left(1+\frac{1}{\lambda}\right)(x+\lambda y)\longrightarrow\\[0.3cm] \left.\left(\frac{1+\lambda}{\lambda}\right)^2(2x+a)+\mu=2\cdot\frac{1+\lambda}{\lambda}(x+\lambda y)\right|\div\frac{1}{(1+\lambda)^2}\\[0.3cm] \frac{2x+a}{\lambda^2}+\frac{\mu}{(1+\lambda)^2}=\frac{2(x+\lambda y)}{\lambda(1+\lambda)}\longrightarrow\\[0.3cm] \frac{2x+a}{\lambda^2}+\frac{\mu}{(1+\lambda)^2}=\frac{2y}{(1+\lambda)}+\frac{2x}{\lambda(1+\lambda)}\longrightarrow\\[0.3cm] \frac{2x+a}{\lambda^2}+\frac{\mu}{(1+\lambda)^2}=\frac{\displaystyle\frac{2x+a}{\lambda^2}-b}{(1+\lambda)}+\frac{2x}{\lambda(1+\lambda)}\longrightarrow\\[0.3cm] \frac{2x+a}{\lambda^2}+\frac{\mu}{(1+\lambda)^2}=\frac{(2x+a)-\lambda^2b}{\lambda^2(1+\lambda)}+\frac{2x}{\lambda(1+\lambda)}\longrightarrow\\[0.3cm] \frac{2x+a}{\lambda^2}+\frac{\mu}{(1+\lambda)^2}=\frac{(2x+a)}{\lambda^2(1+\lambda)}-\frac{\lambda^2b}{\lambda^2(1+\lambda)}+\frac{2x}{\lambda(1+\lambda)}\\[0.3cm] \frac{2x+a}{\lambda^2}+\frac{\mu}{(1+\lambda)^2}-\frac{2x}{\lambda(1+\lambda)}-\frac{(2x+a)}{\lambda^2(1+\lambda)}=-\frac{b}{(1+\lambda)}\\[0.3cm] \frac{(1+\lambda)(2x+a)-2x\lambda-(2x+a)}{\lambda^2(1+\lambda)}+\frac{\mu}{(1+\lambda)^2}=-\frac{b}{(1+\lambda)}\\[0.3cm] \frac{2x+a+2x\lambda+a\lambda-2x\lambda-2x-a}{\lambda^2(1+\lambda)}+\frac{\mu}{(1+\lambda)^2}=-\frac{b}{(1+\lambda)}\\[0.3cm] \left.\frac{a\lambda}{\lambda^2(1+\lambda)}+\frac{\mu}{(1+\lambda)^2}=-\frac{b}{(1+\lambda)}\right|\times-(1+\lambda)\\[0.5cm] \boxed{b=-\frac{a}{\lambda}-\frac{\mu}{(1+\lambda)}}

Conclusion,

The complete integral (1ii) is the envelope of one parameter sub-system obtained by taking



b=aλμ(1+λ)b=-\frac{a}{\lambda}-\frac{\mu}{(1+\lambda)}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS