Question #107632
a) Solve the differential equation
dy/dx + xy= y^2 e^(x^2/2) sinx

b) Given that
y1(x) = x^(-1) is one solution of the differential equation

2x^2 y ′′ + 3xy′ −y =0 ,x >0,
find a second linearly independent solution of the equation
1
Expert's answer
2020-04-03T14:24:59-0400

a)

dydx+xy=y2ex22sinxy+xy=y2ex22sinx\frac{dy}{dx}+xy=y^2e^{\frac{x^2}{2}}\sin x\\ y'+xy=y^2e^{\frac{x^2}{2}}\sin x

We divide by y2y^2

yy2+xy=ex22sinx\frac{y'}{y^2}+\frac{x}{y}=e^{\frac{x^2}{2}}\sin x\\

Replacement

y1=z,y=z1,y=z2zz2zz2+xz=ex22sinxz+xz=ex22sinxi)z+xz=0dzdx=xzdzz=xdxlnz=x22+lncz0=cex22ii)z=c(x)ex22y^{-1}=z, y=z^{-1}, y'=-z^2\cdot z'\\ -\frac{z^{-2}z'}{z^{-2}}+xz=e^{\frac{x^2}{2}}\sin x\\ -z'+xz=e^{\frac{x^2}{2}}\sin x\\ i) -z'+xz=0\\ \frac{dz}{dx}=xz\\ \frac{dz}{z}=xdx\\ ln|z|=\frac{x^2}{2}+ln|c|\\ z_0=c\cdot e^{\frac{x^2}{2}}\\ ii) z=c(x)\cdot e^{\frac{x^2}{2}}\\

Input zz in the equation z+xz=ex22sinx-z'+xz=e^{\frac{x^2}{2}}\sin x

cex22xex22c+xex22c=ex22sinxc=sinxc=cosx+c1-c'e^{\frac{x^2}{2}}-xe^{\frac{x^2}{2}}c+xe^{\frac{x^2}{2}}c=e^{\frac{x^2}{2}}\sin x\\ c'=-\sin x\\ c=\cos x+c_1

then z=(cosx+c1)ex22z=(\cos x+c_1)e^{\frac{x^2}{2}}

or y1=(cosx+c1)ex22y^{-1}=(\cos x+c_1)e^{\frac{x^2}{2}}

and solutoin of equation is function

y=0y=0



b)

y1(x)=1x2x2y+3xyy=0y_1(x)=\frac{1}{x}\\ 2x^2y''+3xy'-y=0

for equation

a0(x)y+a1(x)y+a2(x)y=0a_0(x)y''+a_1(x)y'+a_2(x)y=0

used formula Ostrohrad-Liouville

y1y2y1y2=cea1(x)a0(x)dx\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}=ce^{-\int \frac{a_1(x)}{a_0(x)}dx}

in our case

a0(x)=2x2,a1(x)=3x,a2(x)=1a_0(x)=2x^2, a_1(x)=3x, a_2(x)=-1

then

y1y2y1y2=ce3x2x2dxy1y2y1y2=ce321xdxy1y2y1y2=ce32lnxy1y2y1y2=cx32\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}=ce^{-\int \frac{3x}{2x^2}dx}\\ y_1y'_2-y'_1y_2=ce^{- \frac{3}{2}\int\frac{1}{x}dx}\\ y_1y'_2-y'_1y_2=ce^{- \frac{3}{2}ln|x|}\\ y_1y'_2-y'_1y_2=cx^{- \frac{3}{2}}

Divide by y12y_1^2

y1y2y1y2y12=cx32x2(y2y1)=cx12y2y1=cx12dxy2y1=23cx32+c1\frac{y_1y'_2-y'_1y_2}{y_1^2}=cx^{- \frac{3}{2}}x^2\\ (\frac{y_2}{y_1})'=cx^{\frac{1}{2}}\\ \frac{y_2}{y_1}=\int cx^{\frac{1}{2}}dx\\ \frac{y_2}{y_1}=\frac{2}{3}cx^{\frac{3}{2}}+c_1

Then the solution of equation is

y=(23cx32+c1)1xy=(\frac{2}{3}cx^{\frac{3}{2}}+c_1)\frac{1}{x}

or

y=23cx12+c11xy=\frac{2}{3}cx^{\frac{1}{2}}+c_1\frac{1}{x}

So second linearly independent solution of the equation is

y2=23x12y_2=\frac{2}{3}x^{\frac{1}{2}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS