a)
d y d x + x y = y 2 e x 2 2 sin x y ′ + x y = y 2 e x 2 2 sin x \frac{dy}{dx}+xy=y^2e^{\frac{x^2}{2}}\sin x\\
y'+xy=y^2e^{\frac{x^2}{2}}\sin x d x d y + x y = y 2 e 2 x 2 sin x y ′ + x y = y 2 e 2 x 2 sin x
We divide by y 2 y^2 y 2
y ′ y 2 + x y = e x 2 2 sin x \frac{y'}{y^2}+\frac{x}{y}=e^{\frac{x^2}{2}}\sin x\\ y 2 y ′ + y x = e 2 x 2 sin x
Replacement
y − 1 = z , y = z − 1 , y ′ = − z 2 ⋅ z ′ − z − 2 z ′ z − 2 + x z = e x 2 2 sin x − z ′ + x z = e x 2 2 sin x i ) − z ′ + x z = 0 d z d x = x z d z z = x d x l n ∣ z ∣ = x 2 2 + l n ∣ c ∣ z 0 = c ⋅ e x 2 2 i i ) z = c ( x ) ⋅ e x 2 2 y^{-1}=z, y=z^{-1}, y'=-z^2\cdot z'\\
-\frac{z^{-2}z'}{z^{-2}}+xz=e^{\frac{x^2}{2}}\sin x\\
-z'+xz=e^{\frac{x^2}{2}}\sin x\\
i) -z'+xz=0\\
\frac{dz}{dx}=xz\\
\frac{dz}{z}=xdx\\
ln|z|=\frac{x^2}{2}+ln|c|\\
z_0=c\cdot e^{\frac{x^2}{2}}\\
ii) z=c(x)\cdot e^{\frac{x^2}{2}}\\ y − 1 = z , y = z − 1 , y ′ = − z 2 ⋅ z ′ − z − 2 z − 2 z ′ + x z = e 2 x 2 sin x − z ′ + x z = e 2 x 2 sin x i ) − z ′ + x z = 0 d x d z = x z z d z = x d x l n ∣ z ∣ = 2 x 2 + l n ∣ c ∣ z 0 = c ⋅ e 2 x 2 ii ) z = c ( x ) ⋅ e 2 x 2
Input z z z in the equation − z ′ + x z = e x 2 2 sin x -z'+xz=e^{\frac{x^2}{2}}\sin x − z ′ + x z = e 2 x 2 sin x
− c ′ e x 2 2 − x e x 2 2 c + x e x 2 2 c = e x 2 2 sin x c ′ = − sin x c = cos x + c 1 -c'e^{\frac{x^2}{2}}-xe^{\frac{x^2}{2}}c+xe^{\frac{x^2}{2}}c=e^{\frac{x^2}{2}}\sin x\\
c'=-\sin x\\
c=\cos x+c_1 − c ′ e 2 x 2 − x e 2 x 2 c + x e 2 x 2 c = e 2 x 2 sin x c ′ = − sin x c = cos x + c 1
then z = ( cos x + c 1 ) e x 2 2 z=(\cos x+c_1)e^{\frac{x^2}{2}} z = ( cos x + c 1 ) e 2 x 2
or y − 1 = ( cos x + c 1 ) e x 2 2 y^{-1}=(\cos x+c_1)e^{\frac{x^2}{2}} y − 1 = ( cos x + c 1 ) e 2 x 2
and solutoin of equation is function
y = 0 y=0 y = 0
b)
y 1 ( x ) = 1 x 2 x 2 y ′ ′ + 3 x y ′ − y = 0 y_1(x)=\frac{1}{x}\\
2x^2y''+3xy'-y=0 y 1 ( x ) = x 1 2 x 2 y ′′ + 3 x y ′ − y = 0
for equation
a 0 ( x ) y ′ ′ + a 1 ( x ) y ′ + a 2 ( x ) y = 0 a_0(x)y''+a_1(x)y'+a_2(x)y=0 a 0 ( x ) y ′′ + a 1 ( x ) y ′ + a 2 ( x ) y = 0
used formula Ostrohrad-Liouville
∣ y 1 y 2 y 1 ′ y 2 ′ ∣ = c e − ∫ a 1 ( x ) a 0 ( x ) d x \begin{vmatrix}
y_1 & y_2 \\
y'_1 & y'_2
\end{vmatrix}=ce^{-\int \frac{a_1(x)}{a_0(x)}dx} ∣ ∣ y 1 y 1 ′ y 2 y 2 ′ ∣ ∣ = c e − ∫ a 0 ( x ) a 1 ( x ) d x
in our case
a 0 ( x ) = 2 x 2 , a 1 ( x ) = 3 x , a 2 ( x ) = − 1 a_0(x)=2x^2, a_1(x)=3x, a_2(x)=-1 a 0 ( x ) = 2 x 2 , a 1 ( x ) = 3 x , a 2 ( x ) = − 1
then
∣ y 1 y 2 y 1 ′ y 2 ′ ∣ = c e − ∫ 3 x 2 x 2 d x y 1 y 2 ′ − y 1 ′ y 2 = c e − 3 2 ∫ 1 x d x y 1 y 2 ′ − y 1 ′ y 2 = c e − 3 2 l n ∣ x ∣ y 1 y 2 ′ − y 1 ′ y 2 = c x − 3 2 \begin{vmatrix}
y_1 & y_2 \\
y'_1 & y'_2
\end{vmatrix}=ce^{-\int \frac{3x}{2x^2}dx}\\
y_1y'_2-y'_1y_2=ce^{- \frac{3}{2}\int\frac{1}{x}dx}\\
y_1y'_2-y'_1y_2=ce^{- \frac{3}{2}ln|x|}\\
y_1y'_2-y'_1y_2=cx^{- \frac{3}{2}} ∣ ∣ y 1 y 1 ′ y 2 y 2 ′ ∣ ∣ = c e − ∫ 2 x 2 3 x d x y 1 y 2 ′ − y 1 ′ y 2 = c e − 2 3 ∫ x 1 d x y 1 y 2 ′ − y 1 ′ y 2 = c e − 2 3 l n ∣ x ∣ y 1 y 2 ′ − y 1 ′ y 2 = c x − 2 3
Divide by y 1 2 y_1^2 y 1 2
y 1 y 2 ′ − y 1 ′ y 2 y 1 2 = c x − 3 2 x 2 ( y 2 y 1 ) ′ = c x 1 2 y 2 y 1 = ∫ c x 1 2 d x y 2 y 1 = 2 3 c x 3 2 + c 1 \frac{y_1y'_2-y'_1y_2}{y_1^2}=cx^{- \frac{3}{2}}x^2\\
(\frac{y_2}{y_1})'=cx^{\frac{1}{2}}\\
\frac{y_2}{y_1}=\int cx^{\frac{1}{2}}dx\\
\frac{y_2}{y_1}=\frac{2}{3}cx^{\frac{3}{2}}+c_1 y 1 2 y 1 y 2 ′ − y 1 ′ y 2 = c x − 2 3 x 2 ( y 1 y 2 ) ′ = c x 2 1 y 1 y 2 = ∫ c x 2 1 d x y 1 y 2 = 3 2 c x 2 3 + c 1
Then the solution of equation is
y = ( 2 3 c x 3 2 + c 1 ) 1 x y=(\frac{2}{3}cx^{\frac{3}{2}}+c_1)\frac{1}{x} y = ( 3 2 c x 2 3 + c 1 ) x 1
or
y = 2 3 c x 1 2 + c 1 1 x y=\frac{2}{3}cx^{\frac{1}{2}}+c_1\frac{1}{x} y = 3 2 c x 2 1 + c 1 x 1
So second linearly independent solution of the equation is
y 2 = 2 3 x 1 2 y_2=\frac{2}{3}x^{\frac{1}{2}} y 2 = 3 2 x 2 1
Comments