a)
dxdy+xy=y2e2x2sinxy′+xy=y2e2x2sinx
We divide by y2
y2y′+yx=e2x2sinx
Replacement
y−1=z,y=z−1,y′=−z2⋅z′−z−2z−2z′+xz=e2x2sinx−z′+xz=e2x2sinxi)−z′+xz=0dxdz=xzzdz=xdxln∣z∣=2x2+ln∣c∣z0=c⋅e2x2ii)z=c(x)⋅e2x2
Input z in the equation −z′+xz=e2x2sinx
−c′e2x2−xe2x2c+xe2x2c=e2x2sinxc′=−sinxc=cosx+c1
then z=(cosx+c1)e2x2
or y−1=(cosx+c1)e2x2
and solutoin of equation is function
y=0
b)
y1(x)=x12x2y′′+3xy′−y=0
for equation
a0(x)y′′+a1(x)y′+a2(x)y=0
used formula Ostrohrad-Liouville
∣∣y1y1′y2y2′∣∣=ce−∫a0(x)a1(x)dx
in our case
a0(x)=2x2,a1(x)=3x,a2(x)=−1
then
∣∣y1y1′y2y2′∣∣=ce−∫2x23xdxy1y2′−y1′y2=ce−23∫x1dxy1y2′−y1′y2=ce−23ln∣x∣y1y2′−y1′y2=cx−23
Divide by y12
y12y1y2′−y1′y2=cx−23x2(y1y2)′=cx21y1y2=∫cx21dxy1y2=32cx23+c1
Then the solution of equation is
y=(32cx23+c1)x1
or
y=32cx21+c1x1
So second linearly independent solution of the equation is
y2=32x21
Comments