Question #107271

d²y/dx²-2tanx=0, dy/DX+5y=e^xsecx


1
Expert's answer
2020-03-31T16:07:31-0400

1)d2ydx22tanx=0y2tanx=0y=2tanxdydx=2sinxcosxy=2sinxcosxdxy=2lncosx+c1dydx=2lncosx+c1y=(2lncosx+c1)dxy=2xlncosx2xtanxdx+xc1+c21)\frac{d^2y}{dx^2}-2\tan x=0\\ y''-2\tan x=0\\ y''=2\tan x\\ \frac{dy'}{dx}=2\frac{\sin x}{\cos x}\\ y'=2\int\frac{\sin x}{\cos x}dx\\ y'=-2ln|\cos x|+c_1\\ \frac{dy}{dx}=-2ln|\cos x|+c_1\\ y=\int(-2ln|\cos x|+c_1)dx\\ y=-2xln|\cos x|-2\int x\tan x dx+xc_1+c_2


2)dydx+5y=excosxy+5y=excosxi)y+5y=0dydx=5ydyy=5dxlny=5x+lncy0=ce5xii)y=c(x)e5xce5x5ce5x+5ce5x=excosxc=e6xcosxc=e6xcosxdx+c1y=(e6xcosxdx+c1)e5x2) \frac{dy}{dx}+5y=\frac{e^x}{\cos x}\\ y'+5y=\frac{e^x}{\cos x}\\ i) y'+5y=0\\ \frac{dy}{dx}=-5y\\ \frac{dy}{y}=-5dx\\ ln|y|=-5x+ln|c|\\ y_0=c\cdot e^{-5x}\\ ii) y=c(x)\cdot e^{-5x}\\ c'e^{-5x}-5ce^{-5x}+5ce^{-5x}=\frac{e^x}{\cos x}\\ c'=\frac{e^{6x}}{\cos x}\\ c=\int \frac{e^{6x}}{\cos x}dx+c_1\\ y=(\int \frac{e^{6x}}{\cos x}dx+c_1)\cdot e^{-5x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS