1)dx2d2y−2tanx=0y′′−2tanx=0y′′=2tanxdxdy′=2cosxsinxy′=2∫cosxsinxdxy′=−2ln∣cosx∣+c1dxdy=−2ln∣cosx∣+c1y=∫(−2ln∣cosx∣+c1)dxy=−2xln∣cosx∣−2∫xtanxdx+xc1+c2
2)dxdy+5y=cosxexy′+5y=cosxexi)y′+5y=0dxdy=−5yydy=−5dxln∣y∣=−5x+ln∣c∣y0=c⋅e−5xii)y=c(x)⋅e−5xc′e−5x−5ce−5x+5ce−5x=cosxexc′=cosxe6xc=∫cosxe6xdx+c1y=(∫cosxe6xdx+c1)⋅e−5x
Comments