"f (x,y)=\\begin{cases}\n \\frac{xy^3}{x^2+y^2} &\\text{if } (x,y)\\neq (0,0) \\\\\n 0 &\\text{if } (x,y)=(0,0)\n\\end{cases}"
Find "f_x(0,0)."
"f_x(0,0) = \\lim\\limits_{h\\to0}\\frac{f(h,0) - f(0,0)}{h} = \\lim\\limits_{h\\to0}\\frac{0}{h}=0"
Find "f_x(x,y) \\text{ where } (x,y)\\neq(0,0)."
"f_x(x,y) = \\frac{y^3(x^2+y^2) - 2x^2y^3}{(x^2+y^2)^2} = \\frac{(y^2-x^2)y^3}{(x^2+y^2)^2}"
Therefore, the partial derivative "f" with respest to "x" is
"f_x (x,y)=\\begin{cases}\n \\frac{(y^2-x^2)y^3}{(x^2+y^2)^2}&\\text{if } (x,y)\\neq (0,0) \\\\\n 0 &\\text{if } (x,y)=(0,0)\n\\end{cases}"
To check continuity, find the next limit.
"\\lim\\limits_{(x,y)\\to(0,0)} f_x(x,y)"
Proceed to polar coordinates "x = r\\cos\\varphi, y=r\\sin\\varphi."
"\\lim\\limits_{(x,y)\\to(0,0)} \\frac{(y^2-x^2)y^3}{(x^2+y^2)^2} = \\lim\\limits_{r\\to0} \\frac{(r^2\\sin^2\\varphi - r^2\\cos^2\\varphi)r^3\\sin^3\\varphi}{(r^2\\cos^2\\varphi+r^2\\sin^2\\varphi)^2} \\\\\n= \\lim\\limits_{r\\to0} \\frac{(\\sin^2\\varphi - \\cos^2\\varphi)r^5\\sin^3\\varphi}{r^4} = 0" Therefore, "\\lim\\limits_{(x,y)\\to(0,0)} f_x(x,y) = f(0,0)" and it means that "f_x" is continuous.
Comments
Leave a comment