Question #107191
Find fx(0,0) and fx (x,y) ,where (x, y) ≠(0,0) for the following function

f (x,y)={xy^3/x^2+y^2 , (x,y)not=to (0,0)
0 (x,y)= to (0,0). }

Is fx continuous at (0,0) ? Justify your answer.
1
Expert's answer
2020-04-01T11:29:58-0400
f(x,y)={xy3x2+y2if (x,y)(0,0)0if (x,y)=(0,0)f (x,y)=\begin{cases} \frac{xy^3}{x^2+y^2} &\text{if } (x,y)\neq (0,0) \\ 0 &\text{if } (x,y)=(0,0) \end{cases}


Find fx(0,0).f_x(0,0).


fx(0,0)=limh0f(h,0)f(0,0)h=limh00h=0f_x(0,0) = \lim\limits_{h\to0}\frac{f(h,0) - f(0,0)}{h} = \lim\limits_{h\to0}\frac{0}{h}=0

Find fx(x,y) where (x,y)(0,0).f_x(x,y) \text{ where } (x,y)\neq(0,0).


fx(x,y)=y3(x2+y2)2x2y3(x2+y2)2=(y2x2)y3(x2+y2)2f_x(x,y) = \frac{y^3(x^2+y^2) - 2x^2y^3}{(x^2+y^2)^2} = \frac{(y^2-x^2)y^3}{(x^2+y^2)^2}

Therefore, the partial derivative ff with respest to xx is



fx(x,y)={(y2x2)y3(x2+y2)2if (x,y)(0,0)0if (x,y)=(0,0)f_x (x,y)=\begin{cases} \frac{(y^2-x^2)y^3}{(x^2+y^2)^2}&\text{if } (x,y)\neq (0,0) \\ 0 &\text{if } (x,y)=(0,0) \end{cases}

To check continuity, find the next limit.


lim(x,y)(0,0)fx(x,y)\lim\limits_{(x,y)\to(0,0)} f_x(x,y)

Proceed to polar coordinates x=rcosφ,y=rsinφ.x = r\cos\varphi, y=r\sin\varphi.



lim(x,y)(0,0)(y2x2)y3(x2+y2)2=limr0(r2sin2φr2cos2φ)r3sin3φ(r2cos2φ+r2sin2φ)2=limr0(sin2φcos2φ)r5sin3φr4=0\lim\limits_{(x,y)\to(0,0)} \frac{(y^2-x^2)y^3}{(x^2+y^2)^2} = \lim\limits_{r\to0} \frac{(r^2\sin^2\varphi - r^2\cos^2\varphi)r^3\sin^3\varphi}{(r^2\cos^2\varphi+r^2\sin^2\varphi)^2} \\ = \lim\limits_{r\to0} \frac{(\sin^2\varphi - \cos^2\varphi)r^5\sin^3\varphi}{r^4} = 0

Therefore, lim(x,y)(0,0)fx(x,y)=f(0,0)\lim\limits_{(x,y)\to(0,0)} f_x(x,y) = f(0,0) and it means that fxf_x is continuous.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS