f(x,y)={x2+y2xy30if (x,y)=(0,0)if (x,y)=(0,0)
Find fx(0,0).
fx(0,0)=h→0limhf(h,0)−f(0,0)=h→0limh0=0
Find fx(x,y) where (x,y)=(0,0).
fx(x,y)=(x2+y2)2y3(x2+y2)−2x2y3=(x2+y2)2(y2−x2)y3
Therefore, the partial derivative f with respest to x is
fx(x,y)={(x2+y2)2(y2−x2)y30if (x,y)=(0,0)if (x,y)=(0,0)
To check continuity, find the next limit.
(x,y)→(0,0)limfx(x,y)
Proceed to polar coordinates x=rcosφ,y=rsinφ.
(x,y)→(0,0)lim(x2+y2)2(y2−x2)y3=r→0lim(r2cos2φ+r2sin2φ)2(r2sin2φ−r2cos2φ)r3sin3φ=r→0limr4(sin2φ−cos2φ)r5sin3φ=0 Therefore, (x,y)→(0,0)limfx(x,y)=f(0,0) and it means that fx is continuous.
Comments