Question #107301
Solution of (D^3 -D)y = x^3 is
1
Expert's answer
2020-03-31T15:57:28-0400

Since the indicated equation is inhomogeneous, the solution consists of two parts



y(x)=yhom(x)+yinhom(x),where[(D3D)y=0y=yhom(x)(D3D)y=x3y=yinhom(x),some solutiony(x)=y_{hom}(x)+y_{inhom}(x),\,\,\,\text{where}\\[0.3cm] \left[\begin{array}{l} \left(D^3-D\right)y=0\longrightarrow\,\,\,y=y_{hom}(x)\\[0.3cm] \left(D^3-D\right)y=x^3\longrightarrow\,\,\,y=y_{inhom}(x),\,\,\,\text{some solution} \end{array}\right.



1 STEP: solve a homogeneous equation



(D3D)y=0We are looking for a solution in the formy(x)=ekxDy=d(ekx)dx=kekxD3y=d3(ekx)dx3=k3ekx(D3D)y=0(k3k)ekx=0k(k1)(k+1)=0[k=0k=1k=1\left(D^3-D\right)y=0\\[0.3cm] \text{We are looking for a solution in the form}\,\,\, y(x)=e^{kx}\\[0.3cm] Dy=\frac{d(e^{kx})}{dx}=k\cdot e^{kx}\\[0.3cm] D^3y=\frac{d^3(e^{kx})}{dx^3}=k^3\cdot e^{kx}\\[0.3cm] \left(D^3-D\right)y=0\longrightarrow (k^3-k)\cdot e^{kx}=0\\[0.3cm] k\cdot(k-1)\cdot(k+1)=0\longrightarrow\left[\begin{array}{l} k=0\\[0.3cm] k=1\\[0.3cm] k=-1 \end{array}\right.

Conclusion,



yhom(x)=C1ex+C2+C3ex\boxed{y_{hom}(x)=C_1\cdot e^{x}+C_2+C_3\cdot e^{-x}}

2 STEP: we are looking for a particular solution to the inhomogeneous equation



(D3D)y=x3\left(D^3-D\right)y=x^3

We are looking for a solution in the form



yinhom(x)=Ax4+Bx3+Cx2+Dx+E[Dy=dyinhomdx=4Ax3+3Bx2+2Cx+DD3y=d3yinhomdx3=24Ax+6By_{inhom}(x)=Ax^4+Bx^3+Cx^2+Dx+E\longrightarrow\\[0.3cm] \left[\begin{array}{l} Dy=\displaystyle\frac{dy_{inhom}}{dx}=4Ax^3+3Bx^2+2Cx+D\\[0.3cm] D^3y=\displaystyle\frac{d^3y_{inhom}}{dx^3}=24Ax+6B \end{array}\right.

Then,



(D3D)y=x3(24Ax+6B)(4Ax3+3Bx2+2Cx+D)=x3(14A)x33Bx2+(24A2C)x+(6BD)=0[x3:14A=0A=14x2:3B=0B=0x1:24A2C=0C=3x0:6BD=0D=0\left(D^3-D\right)y=x^3\longrightarrow\\[0.3cm] (24Ax+6B)-(4Ax^3+3Bx^2+2Cx+D)=x^3\longrightarrow\\[0.3cm] (-1-4A)x^3-3Bx^2+(24A-2C)x+(6B-D)=0\longrightarrow\\[0.3cm] \left[\begin{array}{l} x^3\,\,:\,\,-1-4A=0\longrightarrow\boxed{A=-\displaystyle\frac{1}{4}}\\[0.3cm] x^2\,\,:\,\,-3B=0\longrightarrow\boxed{B=0}\\[0.3cm] x^1\,\,:\,\,24A-2C=0\longrightarrow\boxed{C=-3}\\[0.3cm] x^0\,\,:\,\,6B-D=0\longrightarrow\boxed{D=0}\\[0.3cm] \end{array}\right.

Conclusion,



yinhom(x)=x443x2\boxed{y_{inhom}(x)=-\frac{x^4}{4}-3x^2}



General conclusion,


y(x)=yhom(x)+yinhom(x)y(x)=C1ex+C2+C3exx443x2y(x)=y_{hom}(x)+y_{inhom}(x)\longrightarrow\\[0.3cm] \boxed{y(x)=C_1\cdot e^{x}+C_2+C_3\cdot e^{-x}-\frac{x^4}{4}-3x^2}



ANSWER



y(x)=C1ex+C2+C3exx443x2y(x)=C_1\cdot e^{x}+C_2+C_3\cdot e^{-x}-\frac{x^4}{4}-3x^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS