Since the indicated equation is inhomogeneous, the solution consists of two parts
y ( x ) = y h o m ( x ) + y i n h o m ( x ) , where [ ( D 3 − D ) y = 0 ⟶ y = y h o m ( x ) ( D 3 − D ) y = x 3 ⟶ y = y i n h o m ( x ) , some solution y(x)=y_{hom}(x)+y_{inhom}(x),\,\,\,\text{where}\\[0.3cm]
\left[\begin{array}{l}
\left(D^3-D\right)y=0\longrightarrow\,\,\,y=y_{hom}(x)\\[0.3cm]
\left(D^3-D\right)y=x^3\longrightarrow\,\,\,y=y_{inhom}(x),\,\,\,\text{some solution}
\end{array}\right. y ( x ) = y h o m ( x ) + y inh o m ( x ) , where [ ( D 3 − D ) y = 0 ⟶ y = y h o m ( x ) ( D 3 − D ) y = x 3 ⟶ y = y inh o m ( x ) , some solution
1 STEP: solve a homogeneous equation
( D 3 − D ) y = 0 We are looking for a solution in the form y ( x ) = e k x D y = d ( e k x ) d x = k ⋅ e k x D 3 y = d 3 ( e k x ) d x 3 = k 3 ⋅ e k x ( D 3 − D ) y = 0 ⟶ ( k 3 − k ) ⋅ e k x = 0 k ⋅ ( k − 1 ) ⋅ ( k + 1 ) = 0 ⟶ [ k = 0 k = 1 k = − 1 \left(D^3-D\right)y=0\\[0.3cm]
\text{We are looking for a solution in the form}\,\,\, y(x)=e^{kx}\\[0.3cm]
Dy=\frac{d(e^{kx})}{dx}=k\cdot e^{kx}\\[0.3cm]
D^3y=\frac{d^3(e^{kx})}{dx^3}=k^3\cdot e^{kx}\\[0.3cm]
\left(D^3-D\right)y=0\longrightarrow (k^3-k)\cdot e^{kx}=0\\[0.3cm]
k\cdot(k-1)\cdot(k+1)=0\longrightarrow\left[\begin{array}{l}
k=0\\[0.3cm]
k=1\\[0.3cm]
k=-1
\end{array}\right. ( D 3 − D ) y = 0 We are looking for a solution in the form y ( x ) = e k x Dy = d x d ( e k x ) = k ⋅ e k x D 3 y = d x 3 d 3 ( e k x ) = k 3 ⋅ e k x ( D 3 − D ) y = 0 ⟶ ( k 3 − k ) ⋅ e k x = 0 k ⋅ ( k − 1 ) ⋅ ( k + 1 ) = 0 ⟶ ⎣ ⎡ k = 0 k = 1 k = − 1
Conclusion,
y h o m ( x ) = C 1 ⋅ e x + C 2 + C 3 ⋅ e − x \boxed{y_{hom}(x)=C_1\cdot e^{x}+C_2+C_3\cdot e^{-x}} y h o m ( x ) = C 1 ⋅ e x + C 2 + C 3 ⋅ e − x
2 STEP: we are looking for a particular solution to the inhomogeneous equation
( D 3 − D ) y = x 3 \left(D^3-D\right)y=x^3 ( D 3 − D ) y = x 3
We are looking for a solution in the form
y i n h o m ( x ) = A x 4 + B x 3 + C x 2 + D x + E ⟶ [ D y = d y i n h o m d x = 4 A x 3 + 3 B x 2 + 2 C x + D D 3 y = d 3 y i n h o m d x 3 = 24 A x + 6 B y_{inhom}(x)=Ax^4+Bx^3+Cx^2+Dx+E\longrightarrow\\[0.3cm]
\left[\begin{array}{l}
Dy=\displaystyle\frac{dy_{inhom}}{dx}=4Ax^3+3Bx^2+2Cx+D\\[0.3cm]
D^3y=\displaystyle\frac{d^3y_{inhom}}{dx^3}=24Ax+6B
\end{array}\right. y inh o m ( x ) = A x 4 + B x 3 + C x 2 + D x + E ⟶ ⎣ ⎡ Dy = d x d y inh o m = 4 A x 3 + 3 B x 2 + 2 C x + D D 3 y = d x 3 d 3 y inh o m = 24 A x + 6 B
Then,
( D 3 − D ) y = x 3 ⟶ ( 24 A x + 6 B ) − ( 4 A x 3 + 3 B x 2 + 2 C x + D ) = x 3 ⟶ ( − 1 − 4 A ) x 3 − 3 B x 2 + ( 24 A − 2 C ) x + ( 6 B − D ) = 0 ⟶ [ x 3 : − 1 − 4 A = 0 ⟶ A = − 1 4 x 2 : − 3 B = 0 ⟶ B = 0 x 1 : 24 A − 2 C = 0 ⟶ C = − 3 x 0 : 6 B − D = 0 ⟶ D = 0 \left(D^3-D\right)y=x^3\longrightarrow\\[0.3cm]
(24Ax+6B)-(4Ax^3+3Bx^2+2Cx+D)=x^3\longrightarrow\\[0.3cm]
(-1-4A)x^3-3Bx^2+(24A-2C)x+(6B-D)=0\longrightarrow\\[0.3cm]
\left[\begin{array}{l}
x^3\,\,:\,\,-1-4A=0\longrightarrow\boxed{A=-\displaystyle\frac{1}{4}}\\[0.3cm]
x^2\,\,:\,\,-3B=0\longrightarrow\boxed{B=0}\\[0.3cm]
x^1\,\,:\,\,24A-2C=0\longrightarrow\boxed{C=-3}\\[0.3cm]
x^0\,\,:\,\,6B-D=0\longrightarrow\boxed{D=0}\\[0.3cm]
\end{array}\right. ( D 3 − D ) y = x 3 ⟶ ( 24 A x + 6 B ) − ( 4 A x 3 + 3 B x 2 + 2 C x + D ) = x 3 ⟶ ( − 1 − 4 A ) x 3 − 3 B x 2 + ( 24 A − 2 C ) x + ( 6 B − D ) = 0 ⟶ ⎣ ⎡ x 3 : − 1 − 4 A = 0 ⟶ A = − 4 1 x 2 : − 3 B = 0 ⟶ B = 0 x 1 : 24 A − 2 C = 0 ⟶ C = − 3 x 0 : 6 B − D = 0 ⟶ D = 0
Conclusion,
y i n h o m ( x ) = − x 4 4 − 3 x 2 \boxed{y_{inhom}(x)=-\frac{x^4}{4}-3x^2} y inh o m ( x ) = − 4 x 4 − 3 x 2
General conclusion,
y ( x ) = y h o m ( x ) + y i n h o m ( x ) ⟶ y ( x ) = C 1 ⋅ e x + C 2 + C 3 ⋅ e − x − x 4 4 − 3 x 2 y(x)=y_{hom}(x)+y_{inhom}(x)\longrightarrow\\[0.3cm]
\boxed{y(x)=C_1\cdot e^{x}+C_2+C_3\cdot e^{-x}-\frac{x^4}{4}-3x^2} y ( x ) = y h o m ( x ) + y inh o m ( x ) ⟶ y ( x ) = C 1 ⋅ e x + C 2 + C 3 ⋅ e − x − 4 x 4 − 3 x 2
ANSWER
y ( x ) = C 1 ⋅ e x + C 2 + C 3 ⋅ e − x − x 4 4 − 3 x 2 y(x)=C_1\cdot e^{x}+C_2+C_3\cdot e^{-x}-\frac{x^4}{4}-3x^2 y ( x ) = C 1 ⋅ e x + C 2 + C 3 ⋅ e − x − 4 x 4 − 3 x 2
Comments