SOLUTION (a)
Given two families of surfaces
u = x 2 − y 2 = c 1 and v = y 2 − z 2 = c 2 u=x^2-y^2=c_1\quad\text{and}\quad v=y^2-z^2=c_2 u = x 2 − y 2 = c 1 and v = y 2 − z 2 = c 2
For all level surface
d u = 0 ⟶ d u = 2 x d x − 2 y d y = 0 ⟶ x d x = y d y d v = 0 ⟶ d v = 2 y d y − 2 z d z = 0 ⟶ y d y = z d z du=0\longrightarrow du=2xdx-2ydy=0\longrightarrow\\[0.3cm]
\boxed{xdx=ydy}\\[0.3cm]
dv=0\longrightarrow dv=2ydy-2zdz=0\longrightarrow\\[0.3cm]
\boxed{ydy=zdz}\\[0.3cm] d u = 0 ⟶ d u = 2 x d x − 2 y d y = 0 ⟶ x d x = y d y d v = 0 ⟶ d v = 2 y d y − 2 z d z = 0 ⟶ y d y = z d z
Then,
x d x = y d y = z d z ∣ ÷ ( x y z ) x d x x y z = y d y x y z = z d z x y z d x y z = d y x z = d z x y is auxiliary equation \left.xdx=ydy=zdz\right|\div(xyz)\\[0.3cm]
\frac{xdx}{xyz}=\frac{ydy}{xyz}=\frac{zdz}{xyz}\\[0.3cm]
\frac{dx}{yz}=\frac{dy}{xz}=\frac{dz}{xy}\,\text{is auxiliary equation}\\[0.3cm] x d x = y d y = z d z ∣ ÷ ( x yz ) x yz x d x = x yz y d y = x yz z d z yz d x = x z d y = x y d z is auxiliary equation Conclusion,
( y z ) p + ( x z ) q = x y is desired equation \boxed{(yz)p+(xz)q=xy\,\text{is desired equation}} ( yz ) p + ( x z ) q = x y is desired equation
SOLUTION (b)
Given the differential equation
( x − y ) p + ( y − x − z ) q = z (x-y)p+(y-x-z)q=z ( x − y ) p + ( y − x − z ) q = z
Consider a quasilinear equation
a ( x , y , z ) p + b ( x , y , z ) q = c ( x , y , z ) a(x,y,z)p+b(x,y,z)q=c(x,y,z) a ( x , y , z ) p + b ( x , y , z ) q = c ( x , y , z )
By Lagrange’s method the auxiliary equations are as following:
d x a ( x , y , z ) = d y b ( x , y , z ) = d z c ( x , y , z ) \frac{dx}{a(x,y,z)}=\frac{dy}{b(x,y,z)}=\frac{dz}{c(x,y,z)} a ( x , y , z ) d x = b ( x , y , z ) d y = c ( x , y , z ) d z
So, for the given quasilinear equation we come to the system in the symmetric form
d x ( x − y ) = d y y − ( x + z ) = d z z \frac{dx}{(x-y)}=\frac{dy}{y-(x+z)}=\frac{dz}{z} ( x − y ) d x = y − ( x + z ) d y = z d z
One of a way to solve the system in symmetric form is to use the equal fractions property
a 1 b 1 = a 2 b 2 = a 3 b 3 = … = λ 1 a 1 + λ 2 a 2 + ⋯ + λ n a n λ 1 b 1 + λ 2 b 2 + ⋯ + λ n b n \frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{b_3}=\ldots=\frac{\lambda_1a_1+\lambda_2a_2+\cdots+\lambda_na_n}{\lambda_1b_1+\lambda_2b_2+\cdots+\lambda_nb_n} b 1 a 1 = b 2 a 2 = b 3 a 3 = … = λ 1 b 1 + λ 2 b 2 + ⋯ + λ n b n λ 1 a 1 + λ 2 a 2 + ⋯ + λ n a n
In our case, Choosing λ 1 = λ 2 = λ 3 = 1 \lambda_1=\lambda_2=\lambda_3=1 λ 1 = λ 2 = λ 3 = 1 as multipliers, each fraction on
d x ( x − y ) = d y y − ( x + z ) = d z z = 1 ⋅ d x + 1 ⋅ d y + 1 ⋅ d z 1 ⋅ ( x − y ) + 1 ⋅ ( y − x − z ) + z d x ( x − y ) = d y y − ( x + z ) = d z z = d x + d y + d z 0 ⟶ d ( x + y + z ) = 0 ⟶ x + y + z = C 1 \frac{dx}{(x-y)}=\frac{dy}{y-(x+z)}=\frac{dz}{z}=\frac{1\cdot dx+1\cdot dy+1\cdot dz}{1\cdot(x-y)+1\cdot(y-x-z)+z}\\[0.3cm]
\frac{dx}{(x-y)}=\frac{dy}{y-(x+z)}=\frac{dz}{z}=\frac{dx+dy+dz}{0}\longrightarrow\\[0.3cm]
d(x+y+z)=0\longrightarrow\boxed{x+y+z=C_1} ( x − y ) d x = y − ( x + z ) d y = z d z = 1 ⋅ ( x − y ) + 1 ⋅ ( y − x − z ) + z 1 ⋅ d x + 1 ⋅ d y + 1 ⋅ d z ( x − y ) d x = y − ( x + z ) d y = z d z = 0 d x + d y + d z ⟶ d ( x + y + z ) = 0 ⟶ x + y + z = C 1
Take the last two fractions of auxiliary equation and using x + y + z = C 1 x+y+z=C_1 x + y + z = C 1 we get
{ d y y − ( x + z ) = d z z x + y + z = C 1 ⟶ { d y y − ( C 1 − y ) = d z z ( x + z ) = C 1 − y ∫ d y 2 y − C 1 = ∫ d z z ⟶ ln ∣ 2 y − C 1 ∣ 2 = ln ∣ z ∣ + ln ∣ C 2 ∣ ⟶ ln ∣ 2 y − C 1 ∣ − 2 ln ∣ z ∣ = 2 ln ∣ C 2 ∣ ln ∣ 2 y − C 1 z 2 ∣ = ln ∣ C 2 2 ⏟ C 3 ∣ ⟶ 2 y − ( x + y + z ) z 2 = C 3 y − x − z z 2 = C 3 \left\{\begin{array}{l}
\displaystyle\frac{dy}{y-(x+z)}=\displaystyle\frac{dz}{z}\\[0.3cm]
x+y+z=C_1
\end{array}\right.\longrightarrow\left\{\begin{array}{l}
\displaystyle\frac{dy}{y-(C_1-y)}=\displaystyle\frac{dz}{z}\\[0.3cm]
(x+z)=C_1-y
\end{array}\right.\\[0.3cm]
\int\frac{dy}{2y-C_1}=\int\frac{dz}{z}\longrightarrow\\[0.3cm]
\frac{\ln|2y-C_1|}{2}=\ln|z|+\ln|C_2|\longrightarrow\ln|2y-C_1|-2\ln|z|=2\ln|C_2|\\[0.3cm]
\ln\left|\frac{2y-C_1}{z^2}\right|=\ln|\underbrace{C_2^2}_{C_3}|\longrightarrow\frac{2y-(x+y+z)}{z^2}=C_3\\[0.3cm]
\boxed{\frac{y-x-z}{z^2}=C_3} ⎩ ⎨ ⎧ y − ( x + z ) d y = z d z x + y + z = C 1 ⟶ ⎩ ⎨ ⎧ y − ( C 1 − y ) d y = z d z ( x + z ) = C 1 − y ∫ 2 y − C 1 d y = ∫ z d z ⟶ 2 ln ∣2 y − C 1 ∣ = ln ∣ z ∣ + ln ∣ C 2 ∣ ⟶ ln ∣2 y − C 1 ∣ − 2 ln ∣ z ∣ = 2 ln ∣ C 2 ∣ ln ∣ ∣ z 2 2 y − C 1 ∣ ∣ = ln ∣ C 3 C 2 2 ∣ ⟶ z 2 2 y − ( x + y + z ) = C 3 z 2 y − x − z = C 3
We have found two integrals for the given equation
{ x + y + z = C 1 y − x − z z 2 = C 3 \left\{\begin{array}{l}
x+y+z=C_1\\[0.3cm]
\displaystyle\frac{y-x-z}{z^2}=C_3
\end{array}\right. ⎩ ⎨ ⎧ x + y + z = C 1 z 2 y − x − z = C 3
Therefore, any integral surface of the differential equation ( 𝑥 − 𝑦 ) 𝑝 + ( 𝑦 − 𝑥 − 𝑧 ) 𝑞 = 𝑧 (𝑥−𝑦)𝑝+(𝑦−𝑥−𝑧)𝑞=𝑧 ( x − y ) p + ( y − x − z ) q = z is described by the equation
φ ( C 1 , C 3 ) = 0 ⟶ φ ( ( x + y + z ) , y − x − z z 2 ) = 0 is the general integral \varphi\left(C_1,C_3\right)=0\longrightarrow\\[0.3cm]
\boxed{\varphi\left((x+y+z),\frac{y-x-z}{z^2}\right)=0\,\text{is the general integral}} φ ( C 1 , C 3 ) = 0 ⟶ φ ( ( x + y + z ) , z 2 y − x − z ) = 0 is the general integral
where φ \varphi φ is an arbitrary smooth function.
Particular solution:
A particular solution through the circle z = 1 , x 2 + y 2 = 1 z=1, x^2+y^2=1 z = 1 , x 2 + y 2 = 1
{ x + y + z = C 1 y − x − z z 2 = C 3 z = 1 x 2 + y 2 = 1 ⟶ { x + y + 1 = C 1 y − x − 1 = C 3 { x + y + 1 = C 1 y − x − 1 = C 3 ⟶ { y = C 1 + C 3 2 x = C 1 − C 3 2 − 1 \left\{\begin{array}{l}
x+y+z=C_1\\[0.3cm]
\displaystyle\frac{y-x-z}{z^2}=C_3\\[0.3cm]
z=1\\[0.3cm]
x^2+y^2=1
\end{array}\right.\longrightarrow
\left\{\begin{array}{l}
x+y+1=C_1\\[0.3cm]
y-x-1=C_3
\end{array}\right.\\[0.3cm]
\left\{\begin{array}{l}
x+y+1=C_1\\[0.3cm]
y-x-1=C_3
\end{array}\right.\longrightarrow\left\{\begin{array}{l}
y=\displaystyle\frac{C_1+C_3}{2}\\[0.3cm]
x=\displaystyle\frac{C_1-C_3}{2}-1
\end{array}\right.\\[0.3cm] ⎩ ⎨ ⎧ x + y + z = C 1 z 2 y − x − z = C 3 z = 1 x 2 + y 2 = 1 ⟶ { x + y + 1 = C 1 y − x − 1 = C 3 { x + y + 1 = C 1 y − x − 1 = C 3 ⟶ ⎩ ⎨ ⎧ y = 2 C 1 + C 3 x = 2 C 1 − C 3 − 1
Substituting the found expressions into the second condition
x 2 + y 2 = 1 ⟶ ( C 1 − C 3 2 − 1 ) 2 + ( C 1 + C 3 2 ) 2 = 1 C 1 2 − 2 C 1 C 3 + C 3 2 4 − ( C 1 − C 3 ) + 1 + C 1 2 + 2 C 1 C 3 + C 3 2 4 = 1 2 C 1 2 + 2 C 3 2 4 − C 1 + C 3 = 0 C 1 2 + C 3 2 − 2 C 1 + 2 C 3 = 0 C 1 ( C 1 − 2 ) + C 3 ( C 3 + 2 ) = 0 x^2+y^2=1\longrightarrow\left(\frac{C_1-C_3}{2}-1\right)^2+\left(\frac{C_1+C_3}{2}\right)^2=1\\[0.4cm]
\frac{C_1^2-2C_1C_3+C_3^2}{4}-(C_1-C_3)+1+\frac{C_1^2+2C_1C_3+C_3^2}{4}=1\\[0.4cm]
\frac{2C_1^2+2C_3^2}{4}-C_1+C_3=0\\[0.4cm]
C_1^2+C_3^2-2C_1+2C_3=0\\[0.4cm]
\boxed{C_1(C_1-2)+C_3(C_3+2)=0} x 2 + y 2 = 1 ⟶ ( 2 C 1 − C 3 − 1 ) 2 + ( 2 C 1 + C 3 ) 2 = 1 4 C 1 2 − 2 C 1 C 3 + C 3 2 − ( C 1 − C 3 ) + 1 + 4 C 1 2 + 2 C 1 C 3 + C 3 2 = 1 4 2 C 1 2 + 2 C 3 2 − C 1 + C 3 = 0 C 1 2 + C 3 2 − 2 C 1 + 2 C 3 = 0 C 1 ( C 1 − 2 ) + C 3 ( C 3 + 2 ) = 0
Since, φ ( C 1 , C 3 ) = 0 \varphi(C_1,C_3)=0 φ ( C 1 , C 3 ) = 0 , so
φ ( C 1 , C 3 ) = C 1 ( C 1 − 2 ) + C 3 ( C 3 + 2 ) − Particular solution \varphi(C_1,C_3)=C_1(C_1-2)+C_3(C_3+2)-\text{Particular solution} φ ( C 1 , C 3 ) = C 1 ( C 1 − 2 ) + C 3 ( C 3 + 2 ) − Particular solution
Conclusion,
{ x + y + z = C 1 y − x − z z 2 = C 3 ⟶ ( x + y + z ) ( x + y + z − 2 ) + y − x − z z 2 ⋅ ( y − x − z z 2 + 2 ) = 0 \left\{\begin{array}{l}
x+y+z=C_1\\[0.3cm]
\displaystyle\frac{y-x-z}{z^2}=C_3
\end{array}\right.\longrightarrow\\[0.3cm]
(x+y+z)(x+y+z-2)+\frac{y-x-z}{z^2}\cdot\left(\frac{y-x-z}{z^2}+2\right)=0\\[0.3cm] ⎩ ⎨ ⎧ x + y + z = C 1 z 2 y − x − z = C 3 ⟶ ( x + y + z ) ( x + y + z − 2 ) + z 2 y − x − z ⋅ ( z 2 y − x − z + 2 ) = 0
ANSWER
φ ( ( x + y + z ) , y − x − z z 2 ) = 0 is the general solution Particular solution is ( x + y + z ) ( x + y + z − 2 ) + y − x − z z 2 ⋅ ( y − x − z z 2 + 2 ) = 0 \varphi\left((x+y+z),\frac{y-x-z}{z^2}\right)=0\,\text{is the general solution}\\[0.3cm]
\text{Particular solution is}\\[0.3cm]
(x+y+z)(x+y+z-2)+\frac{y-x-z}{z^2}\cdot\left(\frac{y-x-z}{z^2}+2\right)=0 φ ( ( x + y + z ) , z 2 y − x − z ) = 0 is the general solution Particular solution is ( x + y + z ) ( x + y + z − 2 ) + z 2 y − x − z ⋅ ( z 2 y − x − z + 2 ) = 0
Comments