Verify that the equations i) z =sqrt (2x + a )+ sqrt(2y + b) and ii)z^2+u=2(1+l ^x)(x+ly) are both complete integrals of the PDEz=1/p+1/q . Also show that the complete integral (ii) is the envelope of one parameter sub-system obtained by taking b=-a/l -μ/1+l in the solution (i)
Expert's answer
1
Expert's answer
2020-03-23T11:50:34-0400
i) Given
z=2x+a+2y+b(1)
Differentiate (1) partially with respect to x
∂x∂z=22x+a2=2x+a1(2)
Differentiate (1) partially with respect to y
∂y∂z=22+b2=2y+b1(3)
From (2) and (3)
p=2x+a,q=2y+b
Substitutiing in (1) we get
z=p1+q1
ii) Given
z2+μ=2(1+λ−1)(x+λy)(4)
Differentiate (4) partially with respect to x
2z∂x∂z=2(1+λ−1)
z∂x∂z=1+λ−1(5)
Differentiate (4) partially with respect to y
2z∂y∂z=2λ(1+λ−1)
z∂y∂z=λ(1+λ−1)(6)
From (5) and (6)
p=z1(1+λ−1),q=z1λ(1+λ−1)
Then
p1+q1=1+λ−1z+λ(1+λ−1)z
p1+q1=zλ(1+λ−1)λ+1
p1+q1=zλ+1λ+1
Hence
z=p1+q1
Show that the complete integral (ii) is the envelope of one parameter sub-system obtained by taking
b=−λa−1+λμ
Given
z=2x+a+2y+b
Then
f(x,y,z,a,b)=2x+a+2y+b−z=0
∂a∂f=22x+a1+22y+b1⋅dadb=0
2y+b=−dadb2x+a
Let
b=−λa+c
Then
2y+b=λ12x+a
2y+b=λ22x+λ21a
z=(1+λ1)2x+a
z2=λ2(1+λ)2(2x+a)
If
z2+μ=2(1+λ−1)(x+λy)
Then
λ2(1+λ)2(2x+a)=λ2(1+λ)(x+λy)−μ
λ1+λ(2x+a)=2x+λ(2y)−1+λλμ
2(1+λ)x+(1+λ)a=2λx+λ2(λ22x+λ21a−b)−1+λλ2μ
(1+λ)a=a−λ2b−1+λλ2μ
b=−λa−1+λμ
The complete integral (ii) is the envelope of one parameter sub-system obtained by taking
Comments