Question #106082
Verify that the equations i) z =sqrt (2x + a )+ sqrt(2y + b) and ii)z^2+u=2(1+l ^x)(x+ly) are both complete integrals of the PDEz=1/p+1/q . Also show that the complete integral (ii) is the envelope of one parameter sub-system obtained by taking b=-a/l -μ/1+l in the solution (i)
Expert's answer
1
Expert's answer
2020-03-23T11:50:34-0400

i) Given

   z=2x+a+2y+b                   (1)\ \ \ z=\sqrt{2x+a}+\sqrt{2y+b} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1)

Differentiate (1) partially with respect to xx


  zx=222x+a=12x+a           (2)\\ \ \ {\partial z \over \partial x}={2 \over 2\sqrt{2x+a}}={ 1\over \sqrt{2x+a}} \ \ \ \ \ \ \ \ \ \ \ (2)

Differentiate (1) partially with respect to yy


  zy=222+b=12y+b           (3)\\ \ \ {\partial z \over \partial y}={2 \over 2\sqrt{2+b}}={ 1\over \sqrt{2y+b}} \ \ \ \ \ \ \ \ \ \ \ (3)

From (2) and (3)


p=2x+a, q=2y+bp=\sqrt{2x+a},\ q=\sqrt{2y+b}

Substitutiing in (1) we get


z=1p+1qz={1 \over p}+{1 \over q}

ii) Given


  z2+μ=2(1+λ1)(x+λy)               (4)\ \ z^2+\mu=2(1+\lambda^{-1})(x+\lambda y) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)

Differentiate (4) partially with respect to xx


2zzx=2(1+λ1)2z{\partial z \over \partial x}=2(1+\lambda^{-1})


                  zzx=1+λ1                     (5)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ z{\partial z \over \partial x}=1+\lambda^{-1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (5)

Differentiate (4) partially with respect to yy


2zzy=2λ(1+λ1)2z{\partial z \over \partial y}=2\lambda(1+\lambda^{-1})

                zzy=λ(1+λ1)                  (6)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ z{\partial z \over \partial y}=\lambda(1+\lambda^{-1}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)

From (5) and (6)


p=1z(1+λ1), q=1zλ(1+λ1)p={1 \over z}(1+\lambda^{-1}),\ q={1 \over z}\lambda(1+\lambda^{-1})

Then

1p+1q=z1+λ1+zλ(1+λ1){1 \over p}+{1 \over q}={z \over 1+\lambda^{-1}}+{z \over \lambda(1+\lambda^{-1})}

1p+1q=zλ+1λ(1+λ1){1 \over p}+{1 \over q}=z{\lambda+1 \over \lambda(1+\lambda^{-1})}

1p+1q=zλ+1λ+1{1 \over p}+{1 \over q}=z{\lambda+1 \over \lambda+1}

Hence


z=1p+1qz={1 \over p}+{1 \over q}

 Show that the complete integral (ii) is the envelope of one parameter sub-system obtained by taking 


b=aλμ1+λb=-{a \over \lambda}-{\mu \over1+\lambda}

Given


z=2x+a+2y+bz=\sqrt{2x+a}+\sqrt{2y+b}

Then


f(x,y,z,a,b)=2x+a+2y+bz=0f(x, y, z, a, b)=\sqrt{2x+a}+\sqrt{2y+b}-z=0

fa=122x+a+122y+bdbda=0{\partial f \over \partial a}={1 \over 2\sqrt{2x+a}}+{1 \over 2\sqrt{2y+b}}\cdot{db \over da}=0

2y+b=dbda2x+a\sqrt{2y+b}=-{db \over da}\sqrt{2x+a}

Let

b=aλ+cb=-{a \over \lambda}+c

Then


2y+b=1λ2x+a\sqrt{2y+b}={1 \over \lambda}\sqrt{2x+a}

2y+b=2λ2x+1λ2a2y+b={2 \over \lambda^2}x+{1 \over \lambda^2}a

z=(1+1λ)2x+az=(1+{1 \over \lambda})\sqrt{2x+a}

z2=(1+λ)2λ2(2x+a)z^2={(1+\lambda)^2 \over \lambda^2}(2x+a)

If


z2+μ=2(1+λ1)(x+λy)z^2+\mu=2(1+\lambda^{-1})(x+\lambda y)

Then


(1+λ)2λ2(2x+a)=2(1+λ)λ(x+λy)μ{(1+\lambda)^2 \over \lambda^2}(2x+a)={2(1+\lambda) \over \lambda}(x+\lambda y)-\mu

1+λλ(2x+a)=2x+λ(2y)λ1+λμ{1+\lambda \over \lambda}(2x+a)=2x+\lambda(2y)-{\lambda \over 1+\lambda}\mu

2(1+λ)x+(1+λ)a=2λx+λ2(2λ2x+1λ2ab)λ21+λμ2(1+\lambda)x+(1+\lambda)a=2\lambda x+\lambda^2({2 \over \lambda^2}x+{1 \over \lambda^2}a-b)-{\lambda^2 \over 1+\lambda}\mu

(1+λ)a=aλ2bλ21+λμ(1+\lambda)a=a-\lambda^2b-{\lambda^2 \over 1+\lambda}\mu

b=aλμ1+λb=-{a \over \lambda}-{\mu \over1+\lambda}

The complete integral (ii) is the envelope of one parameter sub-system obtained by taking 


b=aλμ1+λb=-{a \over \lambda}-{\mu \over1+\lambda}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS