xdx2d2y−dxdy−4x3y=8x3sinx2,x>0
dx2d2y−x1⋅dxdy−4x2y=8x2sinx2 Here
P=−x1,
Q=−4x2,
R=8x2sinx2
Changing the independent variable from x to z
dz2d2y+P1dzdy+Q1y=R1 where
P1=(dxdz)2dx2d2z+Pdxdz
Q1=(dxdz)2Q
R1=(dxdz)2R We choose z such that
Q1=(dxdz)2Q=constant Let
Q1=(dxdz)2−4x2=−1 Then
dxdz=2x integrating
z=x2 We have
dx2d2z=2
P1=(dxdz)2dx2d2z+Pdxdz=(2)22+(−x1)(2x)=0
R1=(dxdz)2R=(2x)28x2sinx2=2sinz
dz2d2y−y=2sinzMethod of undetermined coefficients
Homogeneous second order differentional equation
dz2d2y−y=0 Characteristic equation
λ2−1=0λ1=−1,λ2=1 The general solution of the homogeneous differential equation is
y0=C1e−z+C2ez Let Y=Acosz+Bsinz, then
dzdY=−Asinz+Bcosz,
dz2d2Y=−Acosz−Bsinz
Acosz+Bsinz+Acosz+Bsinz=2sinz A=0
B=1
Y=sinz The general solution of the nonhomogeneous equation
y(z)=y0+Y
y(z)=C1e−z+C2ez+sinz Substitute z=x2 and obtain the general solution
y(z)=C1e−x2+C2ex2+sinx2
Comments
Dear Renu Chaturvedi, thank you for correcting us.
After changing the variable the differentiation of y" = 2 dy/dt + 4x^2 d^2y/dt^2 but u have written y" = (2/x) dy/dt + 4x d^2y/dt^2 how??