Question #105027
solve the following equation by changing the independent variable x^2 d^2 y/dx - dy/dx -4x^3 y = 8x^3 sin x^2 , x>0
1
Expert's answer
2020-06-08T20:46:40-0400
xd2ydx2dydx4x3y=8x3sinx2,x>0x{d^2y\over dx^2}-{dy\over dx}-4x^3y=8x^3\sin x^2,x>0

d2ydx21xdydx4x2y=8x2sinx2{d^2y\over dx^2}-{1\over x}\cdot{dy\over dx}-4x^2y=8x^2\sin x^2

Here

P=1x,P=-\dfrac{1}{x},


Q=4x2,Q=-4x^2,


R=8x2sinx2R=8x^2\sin x^2

Changing the independent variable from xx to zz

d2ydz2+P1dydz+Q1y=R1{d^2y\over dz^2}+P_1{dy\over dz}+Q_1y=R_1

where


P1=d2zdx2+Pdzdx(dzdx)2P_1=\dfrac{{d^2z\over dx^2}+P{dz\over dx}}{({dz\over dx})^2}

Q1=Q(dzdx)2Q_1=\dfrac{Q}{({dz\over dx})^2}

R1=R(dzdx)2R_1=\dfrac{R}{({dz\over dx})^2}

We choose zz such that


Q1=Q(dzdx)2=constantQ_1=\dfrac{Q}{({dz\over dx})^2}=constant

Let


Q1=4x2(dzdx)2=1Q_1=\dfrac{-4x^2}{({dz\over dx})^2}=-1

Then


dzdx=2x{dz\over dx}=2x

integrating


z=x2z=x^2

We have


d2zdx2=2{d^2z\over dx^2}=2

P1=d2zdx2+Pdzdx(dzdx)2=2+(1x)(2x)(2)2=0P_1=\dfrac{{d^2z\over dx^2}+P{dz\over dx}}{({dz\over dx})^2}=\dfrac{2+(-\dfrac{1}{x})(2x)}{(2)^2}=0

R1=R(dzdx)2=8x2sinx2(2x)2=2sinzR_1=\dfrac{R}{({dz\over dx})^2}=\dfrac{8x^2\sin x^2}{(2x)^2}=2\sin z

d2ydz2y=2sinz{d^2y\over dz^2}-y=2\sin z

Method of undetermined coefficients

Homogeneous second order differentional equation


d2ydz2y=0{d^2y\over dz^2}-y=0

Characteristic equation


λ21=0\lambda^2-1=0λ1=1,λ2=1\lambda_1=-1,\lambda_2=1

The general solution of the homogeneous differential equation is


y0=C1ez+C2ezy_0=C_1e^{-z}+C_2e^{z}

Let Y=Acosz+Bsinz,Y=A\cos z+B\sin z, then


dYdz=Asinz+Bcosz,{dY\over dz}=-A\sin z+B\cos z,

d2Ydz2=AcoszBsinz{d^2Y\over dz^2}=-A\cos z-B\sin z

Acosz+Bsinz+Acosz+Bsinz=2sinzA\cos z+B\sin z+A\cos z+B\sin z=2\sin z

A=0A=0

B=1B=1


Y=sinzY=\sin z

The general solution of the nonhomogeneous equation


y(z)=y0+Yy(z)=y_0+Y

y(z)=C1ez+C2ez+sinzy(z)=C_1e^{-z}+C_2e^{z}+\sin z

Substitute z=x2z=x^2 and obtain the general solution


y(z)=C1ex2+C2ex2+sinx2y(z)=C_1e^{-x^2}+C_2e^{x^2}+\sin x^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
01.06.20, 22:48

Dear Renu Chaturvedi, thank you for correcting us.

Renu Chaturvedi
29.05.20, 22:56

After changing the variable the differentiation of y" = 2 dy/dt + 4x^2 d^2y/dt^2 but u have written y" = (2/x) dy/dt + 4x d^2y/dt^2 how??

LATEST TUTORIALS
APPROVED BY CLIENTS