xdy−(3y+x5y31)dx=0xy′−3y=x5y31
Bernoulli equation
divisible by y31
y31xy′−3y32=x5
we will replace
y32=z(x)y=z23y′=23z21z′y31=z21
then
z21x⋅23⋅z21⋅z′−3z=x523xz′−3z=x53xz′−6z=2x5
obtain a linear equation
1)
3xz′−6z=0zdz=x2dxln∣z∣=2ln∣x∣+ln∣C∣z=C⋅x2
2)
z=C(x)⋅x2z′=C′x2+2Cx
substitute into the equation
3xz′−6z=2x5
3x(C′x2+2Cx)−6Cx2=2x53x3C′−6x2C−6Cx2=2x5C′=32x2C(x)=32⋅3x3+C1
Then
z=(92x3+C1)x2y32=(92x3+C1)x2 is the general solution,
y=0 is a solution
Comments