Question #104800
Solve the differential equation:
xdy - (3y + x^5. y^1/3)dx = 0
1
Expert's answer
2020-03-06T15:56:56-0500

xdy(3y+x5y13)dx=0xy3y=x5y13xdy-(3y+x^5y^{\frac{1}{3}})dx=0\\ xy'-3y=x^5y^{\frac{1}{3}}

Bernoulli equation

divisible by y13y^{\frac{1}{3}}

xyy133y23=x5\frac{xy'}{y^{\frac{1}{3}}}-3y^\frac{2}{3}=x^5

we will replace

y23=z(x)y=z32y=32z12zy13=z12y^{\frac{2}{3}}=z(x)\\ y=z^{\frac{3}{2}}\\ y'=\frac{3}{2}z^{\frac{1}{2}}z'\\ y^{\frac{1}{3}}=z^{\frac{1}{2}}

then

x32z12zz123z=x532xz3z=x53xz6z=2x5\frac{x\cdot\frac{3}{2}\cdot z^{\frac{1}{2}}\cdot z'}{z^{\frac{1}{2}}}-3z=x^5\\ \frac{3}{2}xz'-3z=x^5\\ 3xz'-6z=2x^5

obtain a linear equation

1)

3xz6z=0dzz=2dxxlnz=2lnx+lnCz=Cx23xz'-6z=0\\ \frac{dz}{z}=\frac{2dx}{x}\\ ln|z|=2ln|x|+ln|C|\\ z=C\cdot x^2

2)

z=C(x)x2z=Cx2+2Cxz=C(x)\cdot x^2\\ z'=C'x^2+2Cx\\

substitute into the equation

3xz6z=2x53xz'-6z=2x^5

3x(Cx2+2Cx)6Cx2=2x53x3C6x2C6Cx2=2x5C=23x2C(x)=23x33+C13x(C'x^2+2Cx)-6Cx^2=2x^5\\ 3x^3C'-6x^2C-6Cx^2=2x^5\\ C'=\frac{2}{3}x^2\\ C(x)=\frac{2}{3}\cdot\frac{x^3}{3}+C_1

Then

z=(2x39+C1)x2y23=(2x39+C1)x2z=(\frac{2x^3}{9}+C_1)x^2\\ y^{\frac{2}{3}}=(\frac{2x^3}{9}+C_1)x^2\\ is the general solution,

 y=0y=0 is a solution


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS