"(a)(i)\nf(x,y)=cos(x ^\n2\n +y^ \n2\n )"
"f \n\u2032\n (x,y)_ \nx\n\u200b\t\n =\u22122xsin(x \n^2\n +y^ \n2\n )"
"f \n\u2032\u2032\n (x,y)_ \n{xx}\n\u200b\t\n =\u22122sin(x^ \n2\n +y ^\n2\n )\u22122x.2xcos(x^ \n2\n +y ^\n2\n )=\u22122sin(x^ \n2\n +y ^\n2\n )" "\u22124x^ \n2\n cos(x^ \n2\n +y ^\n2\n )"
"f \n\u2032\n (x,y)_ \ny\n\u200b\t\n =\u22122ysin(x ^\n2\n +y ^\n2\n )"
"f \n\u2032\u2032\n (x,y)_ \n{yy}\n\u200b\t\n =\u22122sin(x^ \n2\n +y ^\n2\n )\u22122y.2ycos(x^ \n2\n +y ^\n2\n )=\u22122sin(x^ \n2\n +y ^\n2\n )" "\u22124y^ \n2\n cos(x^ \n2\n +y ^\n2\n )"
"(ii) \\ f(x,y)=sin(x\/y)\\\\f'(x,y)_x=\\dfrac{cos(x\/y)}{y}\\\\f''(x,y)_{xx}=-\\dfrac{sin(x\/y)}{y^2} \\\\ f'(x,y)_y=-\\frac{x\\cos \\left(\\frac{x}{y}\\right)}{y^2} \\\\f''(x,y)_{yy}=\\mathrm{\\:}x\\frac{\\frac{x\\sin \\left(\\frac{x}{y}\\right)}{y^2}y^2-2y\\cos \\left(\\frac{x}{y}\\right)}{\\left(y^2\\right)^2}=\\frac{x\\left(x\\sin \\left(\\frac{x}{y}\\right)-2y\\cos \\left(\\frac{x}{y}\\right)\\right)}{y^4}"
"(b) f(x,y) =10\u2013x^2\u2013y^2\\ \\& \\ \\ \\ \\ ; x^2+y^2 \u22649\\\\ f(x,y)=10-(x^2+y^2) \\\\maximum \\ value\\ of x^2+y^2 \\ is\\ 9\\ and \\ minimum\\ value\\ is \\ 0"
"f(x,y) \\ ranges \\ between \\ 1 \\ to\\ 10"
"(c)f(x,y)=|x-1|\\ at\\ (0,1)\\\\"
From the graph we can see that there is sharp turn at x=1 which means the function is not differentiable at x=1
"(ii) y^{3}+y\\sin2x+e^{x+y}=0"
In the above function no subpart of the function which is not differentiable at any point
sin , exponential and y^3 all are continuous and differentiable at all domain
Hence the above function is differentiable
"d) w = xy + x , x = cos t , y = sint"
substituting x and y in w
"w=cos t*sin t + cos t"
"w=(sin 2t)\/2 + cos t"
"dw\/dt= cos 2t - sin t"
"putting t=0\n\ndw\/dt= 1"
Comments
Leave a comment