Question #104255
Using the method of undetermined coefficients, write the trial solution of the equation d^2y/dx^2+2dy/dx+5y=x e^(–1) cos2x and hence solve it.
1
Expert's answer
2020-03-02T09:47:22-0500

y+2y+5y=excos2xy''+2y'+5y=e^{-x}\cos 2x

Characteristic equation: λ2+2λ+5=0\lambda^2+2\lambda+5=0, which has roots λ1=12i\lambda_1=-1-2i and λ2=1+2i\lambda_2=-1+2i

Trial solution is y=Axexcos2x+Bxexsin2xy=Axe^{-x}\cos 2x+Bxe^{-x}\sin 2x

y=Aexcos2xAxexcos2x2Axexsin2x+y'=Ae^{-x}\cos 2x-Axe^{-x}\cos 2x-2Axe^{-x}\sin 2x+

+Bexsin2xBxexsin2x+2Bxexcos2x+Be^{-x}\sin 2x-Bxe^{-x}\sin 2x+2Bxe^{-x}\cos 2x

y=Axexcos2x4Axexcos2x2Aexcos2xy''=Axe^{-x}\cos 2x-4Axe^{-x}\cos 2x-2Ae^{-x}\cos 2x-

4Aexsin2x+4Axexsin2x+Bxexsin2x-4Ae^{-x}\sin 2x+4Axe^{-x}\sin 2x+Bxe^{-x}\sin 2x-

4Bxexsin2x2Bexsin2x+4Bexcos2x-4Bxe^{-x}\sin 2x-2Be^{-x}\sin 2x+4Be^{-x}\cos 2x-

4Bxexcos2x-4Bxe^{-x}\cos 2x

excos2x=y+2y+5y=4Bexcos2x4Aexsin2xe^{-x}\cos 2x=y''+2y'+5y=4Be^{-x}\cos 2x-4Ae^{-x}\sin 2x

B=14,A=0B=\frac{1}{4}, A=0

Answer:

Trial solution is 14xexsin2x\frac{1}{4}xe^{-x}\sin 2x

General solution is Cexcos2x+Dexsin2x+14xexsin2xCe^{-x}\cos 2x+De^{-x}\sin 2x+\frac{1}{4}xe^{-x}\sin 2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS