y′′+2y′+5y=e−xcos2x
Characteristic equation: λ2+2λ+5=0, which has roots λ1=−1−2i and λ2=−1+2i
Trial solution is y=Axe−xcos2x+Bxe−xsin2x
y′=Ae−xcos2x−Axe−xcos2x−2Axe−xsin2x+
+Be−xsin2x−Bxe−xsin2x+2Bxe−xcos2x
y′′=Axe−xcos2x−4Axe−xcos2x−2Ae−xcos2x−
−4Ae−xsin2x+4Axe−xsin2x+Bxe−xsin2x−
−4Bxe−xsin2x−2Be−xsin2x+4Be−xcos2x−
−4Bxe−xcos2x
e−xcos2x=y′′+2y′+5y=4Be−xcos2x−4Ae−xsin2x
B=41,A=0
Answer:
Trial solution is 41xe−xsin2x
General solution is Ce−xcos2x+De−xsin2x+41xe−xsin2x
Comments