"y''+2y'+5y=e^{-x}\\cos 2x"
Characteristic equation: "\\lambda^2+2\\lambda+5=0", which has roots "\\lambda_1=-1-2i" and "\\lambda_2=-1+2i"
Trial solution is "y=Axe^{-x}\\cos 2x+Bxe^{-x}\\sin 2x"
"y'=Ae^{-x}\\cos 2x-Axe^{-x}\\cos 2x-2Axe^{-x}\\sin 2x+"
"+Be^{-x}\\sin 2x-Bxe^{-x}\\sin 2x+2Bxe^{-x}\\cos 2x"
"y''=Axe^{-x}\\cos 2x-4Axe^{-x}\\cos 2x-2Ae^{-x}\\cos 2x-"
"-4Ae^{-x}\\sin 2x+4Axe^{-x}\\sin 2x+Bxe^{-x}\\sin 2x-"
"-4Bxe^{-x}\\sin 2x-2Be^{-x}\\sin 2x+4Be^{-x}\\cos 2x-"
"-4Bxe^{-x}\\cos 2x"
"e^{-x}\\cos 2x=y''+2y'+5y=4Be^{-x}\\cos 2x-4Ae^{-x}\\sin 2x"
"B=\\frac{1}{4}, A=0"
Answer:
Trial solution is "\\frac{1}{4}xe^{-x}\\sin 2x"
General solution is "Ce^{-x}\\cos 2x+De^{-x}\\sin 2x+\\frac{1}{4}xe^{-x}\\sin 2x"
Comments
Leave a comment