Show that if z is abse nt from the e quation F (x, y, z, p, q)= 0,Charpit's
method coincides with Jacobi's method.
Solution:-
we know that f(x,y,z,p,q)=0 and g(x,y,z,p,q)=0 (1) are compatible if
"{ \\partial (f,g)\\above{2pt}\\partial (x,p) }+p{ \\partial(f,g)\\above{2pt} \\partial (z,p)}+{\\partial (f,g) \\above{2pt} \\partial (y,q)}+q{ \\partial (f,g)\\above{2pt} \\partial (z,q)}=0" (2)
First part:- Comparing the given equations f(x,y,zp,q)=0 and g(x,y,z,p,q)=0 with (1) , we find that z is absent in given equations and so
"{\\partial f \\above{2pt}\\partial z } =0" and "{\\partial g \\above{2pt} \\partial z}=0" (3)
Now,
"{\\partial (f,g) \\above{2pt}\\partial (z,p) }=\\begin{vmatrix}\n{ \\partial f\\above{2pt} \\partial z} & {\\partial f \\above{2pt}\\partial p } \\\\\n {\\partial g\\above{2pt}\\partial z } & { \\partial g\\above{2pt}\\partial p }\n\\end{vmatrix}" "=" "\\begin{vmatrix}\n0 & {\\partial f \\above{2pt}\\partial p } \\\\\n 0 & { \\partial g\\above{2pt}\\partial p }\n\\end{vmatrix}" "=0" and
"{\\partial (f,g) \\above{2pt}\\partial (z,q) }=" "\\begin{vmatrix}\n{ \\partial f\\above{2pt} \\partial z} & {\\partial f \\above{2pt}\\partial q } \\\\\n {\\partial g\\above{2pt}\\partial z } & { \\partial g\\above{2pt}\\partial q }\n\\end{vmatrix}" "=\\begin{vmatrix}\n0 & {\\partial f \\above{2pt}\\partial q } \\\\\n 0 & { \\partial g\\above{2pt}\\partial a }\n\\end{vmatrix}" "=0"
Substituting these value in equation (2) the required solution is
"{ \\partial (f,g)\\above{2pt}\\partial (x,p) }+{\\partial (f,g) \\above{2pt} \\partial (y,q)}=0"
Charpit’s method:-
It is a general method for finding the general solution of a nonlinear PDE of first-order of the form
"f(x,y,z,p,q)=0" (1)
Basic Idea: To introduce another partial differential equation of the first order
"g(x,y,z,p,q,a)=0" (2)
which contains an arbitrary constant a and is such that
(i) equations (1) and (2) can be solved for p and q to obtain
"p=p(x,y,u,a)" , "q=q(x,y,u,a)"
(ii) the equation
"du=p(x,y,u,a)dx+q(x,y,u,a)dy" (3)
is integrable.
When such a function g is found, the solution
"F(x,y,u,a,b)=0"
of (3) containing two arbitrary constants a and b will be the solution of (6). The compatibility of equations (1) and (2) yields
The compatibility of equations (1) and (2) yields
"[f,g]=" "{ \\partial (f,g)\\above{2pt}\\partial (x,p) }+p{ \\partial(f,g)\\above{2pt} \\partial (z,p)}+{\\partial (f,g) \\above{2pt} \\partial (y,q)}+q{ \\partial (f,g)\\above{2pt} \\partial (z,q)}=0"
Expanding it, we are led to the following linear PDE in g(x, y, u, p, q):
"f_p{ \\partial g\\above{2pt} \\partial x }+f_q{ \\partial g\\above{2pt} \\partial y}+(pf_p+af_q){ \\partial g\\above{2pt}\\partial u }-(f_x+pf_u){ \\partial g\\above{2pt}\\partial p }-(f_y+qf_u){ \\partial g\\above{2pt}\\partial q }=0" (4)
Now solve (9) to determine g by finding the integrals of the following auxiliary equations:
"{dx \\above{2pt} f_p}={dy \\above{2pt}f_q }={du \\above{2pt} pf_p+qf_q}={dp \\above{2pt} -(f_x+pf_u)}={dq\\above{2pt} -(f_y+qf_u)}" (5)
These equations are known as Charpit’s equations. Once an integral g(x, y, u, p, q, a) of this kind has been found, the problem reduces to solving for p and q, and then integrating equation (3).
Comments
Dear YUVASRI RAMAKRISHNAN, please use the panel for submitting new questions.
solve by jacobi method q-px-p^2=0
Leave a comment