y2−2xyy′+x2(y′)2−(y′)24=0a=1,b=−2xy′,c=x2(y′)2−(y′)24D=b2−4ac=4x2(y′)2−4(x2(y′)2−(y′)24)==(y′)2161)y=22xy′−y′4⟹y=xy′−y′2(i)
this is Clairaut's equation, make a substitution
y′=p,dy=pdx
then
y=xp−p2dy=pdx+xdp+p22dppdx=pdx+xdp+p22dp(x+p22)dp=0a)dp=0⟹p=c⟹y=xc−c2
is the general solution of equation.
b)x+p22=0 .
Suppose x<0 then
p=±−x2⟹y′=±−x2⟹y=±(−22(−x))+c1
input y in (*)
±(−22(−x))+c1==x(±−x2)−(±−x22)⟹c1=0,
then y=±(−22(−x)) are solutions of the equation.
2)y=22xy′+y′4⟹y=xy′+y′2(ii)
this is the Clairaut's equation, make a substitution
y′=p,dy=pdx
then
y=xp+p2dy=pdx+xdp−p22dppdx=pdx+xdp−p22dp(x−p22)dp=0a)dp=0⟹p=c⟹y=xc+c2
is the general solution
b)x−p22=0
suppose x>0 then
p=±x2⟹y′=±x2⟹y=±22x+c2
input y in (ii)
±22x+c2=±xx2+±x22⟹c2=0
then y=±22x are solutions of the equation.
Comments