y 2 − 2 x y y ′ + x 2 ( y ′ ) 2 − 4 ( y ′ ) 2 = 0 a = 1 , b = − 2 x y ′ , c = x 2 ( y ′ ) 2 − 4 ( y ′ ) 2 D = b 2 − 4 a c = 4 x 2 ( y ′ ) 2 − 4 ( x 2 ( y ′ ) 2 − 4 ( y ′ ) 2 ) = = 16 ( y ′ ) 2 1 ) y = 2 x y ′ − 4 y ′ 2 ⟹ y = x y ′ − 2 y ′ ( i ) y^2-2xyy'+x^2(y')^2-\frac{4}{(y')^2}=0\\
a=1, b=-2xy', c=x^2(y')^2-\frac{4}{(y')^2}\\
D=b^2-4ac=4x^2(y')^2-4(x^2(y')^2-\frac{4}{(y')^2})=\\
=\frac{16}{(y')^2}\\
1) y=\frac{2xy'-\frac{4}{y'}}{2} \implies y=xy'-\frac{2}{y'} (i) y 2 − 2 x y y ′ + x 2 ( y ′ ) 2 − ( y ′ ) 2 4 = 0 a = 1 , b = − 2 x y ′ , c = x 2 ( y ′ ) 2 − ( y ′ ) 2 4 D = b 2 − 4 a c = 4 x 2 ( y ′ ) 2 − 4 ( x 2 ( y ′ ) 2 − ( y ′ ) 2 4 ) = = ( y ′ ) 2 16 1 ) y = 2 2 x y ′ − y ′ 4 ⟹ y = x y ′ − y ′ 2 ( i )
this is Clairaut's equation, make a substitution
y ′ = p , d y = p d x y'=p, dy=p dx y ′ = p , d y = p d x
then
y = x p − 2 p d y = p d x + x d p + 2 p 2 d p p d x = p d x + x d p + 2 p 2 d p ( x + 2 p 2 ) d p = 0 a ) d p = 0 ⟹ p = c ⟹ y = x c − 2 c y=xp-\frac{2}{p}\\
dy=pdx +xdp+\frac{2}{p^2}dp\\
pdx=pdx +xdp+\frac{2}{p^2}dp\\
(x+\frac{2}{p^2})dp=0\\
a) dp=0 \implies p=c \implies y=xc-\frac{2}{c} y = x p − p 2 d y = p d x + x d p + p 2 2 d p p d x = p d x + x d p + p 2 2 d p ( x + p 2 2 ) d p = 0 a ) d p = 0 ⟹ p = c ⟹ y = x c − c 2
is the general solution of equation.
b ) x + 2 p 2 = 0 b) x+\frac{2}{p^2}=0 b ) x + p 2 2 = 0 .
Suppose x < 0 x<0 x < 0 then
p = ± 2 − x ⟹ y ′ = ± 2 − x ⟹ y = ± ( − 2 2 ( − x ) ) + c 1 p=\pm\sqrt\frac{2}{-x} \implies y'=\pm\sqrt\frac{2}{-x} \implies\\
y=\pm(-2\sqrt2 \sqrt{(-x)}) +c_1 p = ± − x 2 ⟹ y ′ = ± − x 2 ⟹ y = ± ( − 2 2 ( − x ) ) + c 1
input y in (*)
± ( − 2 2 ( − x ) ) + c 1 = = x ( ± 2 − x ) − ( ± 2 2 − x ) ⟹ c 1 = 0 , \pm(-2\sqrt2 \sqrt {( -x )})+c_1=\\
=x(\pm\sqrt\frac{2}{-x})-(\pm\frac{2}{\sqrt\frac{2}{-x}})\implies\\
c_1=0, ± ( − 2 2 ( − x ) ) + c 1 = = x ( ± − x 2 ) − ( ± − x 2 2 ) ⟹ c 1 = 0 ,
then y = ± ( − 2 2 ( − x ) ) y=\pm(-2\sqrt2 \sqrt{(-x)}) y = ± ( − 2 2 ( − x ) ) are solutions of the equation.
2 ) y = 2 x y ′ + 4 y ′ 2 ⟹ y = x y ′ + 2 y ′ ( i i ) 2) y=\frac{2xy'+\frac{4}{y'}}{2} \implies y=xy'+\frac{2}{y'} (ii) 2 ) y = 2 2 x y ′ + y ′ 4 ⟹ y = x y ′ + y ′ 2 ( ii )
this is the Clairaut's equation, make a substitution
y ′ = p , d y = p d x y'=p, dy=p dx y ′ = p , d y = p d x
then
y = x p + 2 p d y = p d x + x d p − 2 p 2 d p p d x = p d x + x d p − 2 p 2 d p ( x − 2 p 2 ) d p = 0 a ) d p = 0 ⟹ p = c ⟹ y = x c + 2 c y=xp+\frac{2}{p}\\
dy=pdx +xdp-\frac{2}{p^2}dp\\
pdx=pdx +xdp-\frac{2}{p^2}dp\\
(x-\frac{2}{p^2})dp=0\\
a) dp=0 \implies p=c \implies y=xc+\frac{2}{c} y = x p + p 2 d y = p d x + x d p − p 2 2 d p p d x = p d x + x d p − p 2 2 d p ( x − p 2 2 ) d p = 0 a ) d p = 0 ⟹ p = c ⟹ y = x c + c 2
is the general solution
b ) x − 2 p 2 = 0 b) x-\frac{2}{p^2}=0 b ) x − p 2 2 = 0
suppose x>0 then
p = ± 2 x ⟹ y ′ = ± 2 x ⟹ y = ± 2 2 x + c 2 p=\pm\sqrt\frac{2}{x} \implies y'=\pm\sqrt\frac{2}{x} \implies\\
y=\pm2\sqrt2 \sqrt x +c_2 p = ± x 2 ⟹ y ′ = ± x 2 ⟹ y = ± 2 2 x + c 2
input y in (ii)
± 2 2 x + c 2 = ± x 2 x + 2 ± 2 x ⟹ c 2 = 0 \pm2\sqrt2 \sqrt x+c_2=\pm x\sqrt\frac{2}{x}+\frac{2}{\pm\sqrt\frac{2}{x}}\implies\\
c_2=0 ± 2 2 x + c 2 = ± x x 2 + ± x 2 2 ⟹ c 2 = 0
then y = ± 2 2 x y=\pm2\sqrt2 \sqrt x y = ± 2 2 x are solutions of the equation.
Comments