Question #103606
: y^2 + x^2 (dy/dx)^2 -2xy (dy/dx) = 4 (dx/dy)^2
1
Expert's answer
2020-02-24T11:12:42-0500

y22xyy+x2(y)24(y)2=0a=1,b=2xy,c=x2(y)24(y)2D=b24ac=4x2(y)24(x2(y)24(y)2)==16(y)21)y=2xy4y2    y=xy2y(i)y^2-2xyy'+x^2(y')^2-\frac{4}{(y')^2}=0\\ a=1, b=-2xy', c=x^2(y')^2-\frac{4}{(y')^2}\\ D=b^2-4ac=4x^2(y')^2-4(x^2(y')^2-\frac{4}{(y')^2})=\\ =\frac{16}{(y')^2}\\ 1) y=\frac{2xy'-\frac{4}{y'}}{2} \implies y=xy'-\frac{2}{y'} (i)

this is Clairaut's equation, make a substitution

y=p,dy=pdxy'=p, dy=p dx

then

y=xp2pdy=pdx+xdp+2p2dppdx=pdx+xdp+2p2dp(x+2p2)dp=0a)dp=0    p=c    y=xc2cy=xp-\frac{2}{p}\\ dy=pdx +xdp+\frac{2}{p^2}dp\\ pdx=pdx +xdp+\frac{2}{p^2}dp\\ (x+\frac{2}{p^2})dp=0\\ a) dp=0 \implies p=c \implies y=xc-\frac{2}{c}

is the general solution of equation.

b)x+2p2=0b) x+\frac{2}{p^2}=0 .

Suppose x<0x<0 then

p=±2x    y=±2x    y=±(22(x))+c1p=\pm\sqrt\frac{2}{-x} \implies y'=\pm\sqrt\frac{2}{-x} \implies\\ y=\pm(-2\sqrt2 \sqrt{(-x)}) +c_1

input y in (*)

±(22(x))+c1==x(±2x)(±22x)    c1=0,\pm(-2\sqrt2 \sqrt {( -x )})+c_1=\\ =x(\pm\sqrt\frac{2}{-x})-(\pm\frac{2}{\sqrt\frac{2}{-x}})\implies\\ c_1=0,

then y=±(22(x))y=\pm(-2\sqrt2 \sqrt{(-x)}) are solutions of the equation.

2)y=2xy+4y2    y=xy+2y(ii)2) y=\frac{2xy'+\frac{4}{y'}}{2} \implies y=xy'+\frac{2}{y'} (ii)

this is the Clairaut's equation, make a substitution

y=p,dy=pdxy'=p, dy=p dx

then

y=xp+2pdy=pdx+xdp2p2dppdx=pdx+xdp2p2dp(x2p2)dp=0a)dp=0    p=c    y=xc+2cy=xp+\frac{2}{p}\\ dy=pdx +xdp-\frac{2}{p^2}dp\\ pdx=pdx +xdp-\frac{2}{p^2}dp\\ (x-\frac{2}{p^2})dp=0\\ a) dp=0 \implies p=c \implies y=xc+\frac{2}{c}

is the general solution

b)x2p2=0b) x-\frac{2}{p^2}=0

suppose x>0 then

p=±2x    y=±2x    y=±22x+c2p=\pm\sqrt\frac{2}{x} \implies y'=\pm\sqrt\frac{2}{x} \implies\\ y=\pm2\sqrt2 \sqrt x +c_2

input y in (ii)

±22x+c2=±x2x+2±2x    c2=0\pm2\sqrt2 \sqrt x+c_2=\pm x\sqrt\frac{2}{x}+\frac{2}{\pm\sqrt\frac{2}{x}}\implies\\ c_2=0

then ​y=±22xy=\pm2\sqrt2 \sqrt x are solutions of the equation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS