The equation of motion for the pendulum:
"\\frac{d^2\\theta}{dt^2}=-\\frac{g}{l}sin\\theta, \\;\\;\\theta (0)=\\alpha,\\;\\;\\frac{d\\theta (0)}{dt}=0."
For small angles "\\theta" we can use the approximation "sin\\theta=\\theta."
Thus, the solution of the initial value problem
"\\frac{d^2\\theta}{dt}=-\\frac{g}{l}\\theta,\\;\\; \\theta (0)=\\alpha,\\;\\;\\frac{d\\theta}{dt}=0"
is "\\theta=\\alpha cos(\\sqrt{\\frac{g}{l}}t)."
"v(t)=\\frac{d\\theta}{dt}=-\\alpha\\sqrt{\\frac{g}{l}}sin(\\sqrt{\\frac{g}{l}}t)".
Comments
Leave a comment