Question #104050
If a simple pendulum of length l oscillates through an angle α on either side of the mean position then find the angular velocity dt/dθ
of the pendulum where θ is the angle which the string makes with the vertical.
1
Expert's answer
2020-03-03T14:57:43-0500

The equation of motion for the pendulum:

d2θdt2=glsinθ,    θ(0)=α,    dθ(0)dt=0.\frac{d^2\theta}{dt^2}=-\frac{g}{l}sin\theta, \;\;\theta (0)=\alpha,\;\;\frac{d\theta (0)}{dt}=0.

For small angles θ\theta we can use the approximation sinθ=θ.sin\theta=\theta.

Thus, the solution of the initial value problem

d2θdt=glθ,    θ(0)=α,    dθdt=0\frac{d^2\theta}{dt}=-\frac{g}{l}\theta,\;\; \theta (0)=\alpha,\;\;\frac{d\theta}{dt}=0

is θ=αcos(glt).\theta=\alpha cos(\sqrt{\frac{g}{l}}t).

v(t)=dθdt=αglsin(glt)v(t)=\frac{d\theta}{dt}=-\alpha\sqrt{\frac{g}{l}}sin(\sqrt{\frac{g}{l}}t).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS