1.1) y21dxdy+y1=2x
−y21dxdy−y1=−2x
v(x)=y(x)1, dxdv=−y2(x)1dxdy
Substitute v(x) :
dxdv−v=−2x
Multiply by e−x both sides of equation:
e−xdxdv−e−xv=−2xe−x
e−xdxdv+vdxd(e−x)=−2xe−x
dxd(ve−x)=−2xe−x
ve−x=∫(−2xe−x)dx=2xe−x+2e−x+C
Return to y(x):
y1e−x=2xe−x+2e−x+C
y=2xe−x+2e−x+Ce−x=2x+2+Cex1
Answer: y(x)=Cex+2(x+1)1
1.2)(y2exy2+4x3)dx+(2xyexy2−3y2)dy=0
P(x,y)=y2exy2+4x3, Q(x,y)=2xyexy2−3y2
∂y∂P(x,y)=∂x∂Q(x,y)=2yexy2+2xy3exy2
So, we will find function f(x,y):
∂x∂f(x,y)=y2exy2+4x3, ∂y∂f(x,y)=2xyexy2−3y2
f(x,y)=∫(y2exy2+4x3)dx=exy2+x4+ϕ(y)
f(x,y)=∫(2xyexy2−3y2)dy=exy2−y3+ψ(x)
f(x,y)=exy2+x4−y3
∂x∂f(x,y)dx+∂y∂f(x,y)dy=0 ⇒f(x,y)≡C
Answer: exy2(x)+x4−y3(x)=C
Comments