Question #105003
1.1) y^-2 dy/dx + y^-1 = 2x

1.2) (y^2e^xy^2 +4x^3)dx + (2xye^xy^2 - 3y^2)dy = 0
1
Expert's answer
2020-03-09T13:59:54-0400

1.1) 1y2dydx+1y=2x1.1) \ \frac{1}{y^2} \frac{dy}{dx}+\frac{1}{y}=2x

 1y2dydx1y=2x\ -\frac{1}{y^2} \frac{dy}{dx}-\frac{1}{y}=-2x


v(x)=1y(x), dvdx=1y2(x)dydxv(x)=\frac{1}{y(x)}, \ \frac{dv}{dx}=-\frac{1}{y^2(x)}\frac{dy}{dx}


Substitute v(x)v(x) :

dvdxv=2x\frac{dv }{dx}-v=-2x


Multiply by exe^{-x} both sides of equation:

exdvdxexv=2xexe^{-x}\frac{dv}{dx} -e^{-x}v=-2xe^{-x}

exdvdx+vddx(ex)=2xexe^{-x}\frac{dv}{dx} +v\frac{d}{dx}(e^{-x})=-2xe^{-x}

ddx(vex)=2xex\frac{d}{dx}(ve^{-x})=-2xe^{-x}

vex=(2xex)dx=2xex+2ex+Cve^{-x}=\int (-2xe^{-x})dx=2xe^{-x}+2e^{-x}+C


Return to y(x):y(x):

1yex=2xex+2ex+C\frac{1}{y}e^{-x}= 2xe^{-x}+2e^{-x}+C

y=ex2xex+2ex+C=12x+2+Cexy=\frac{e^{-x}}{2xe^{-x}+2e^{-x}+C}=\frac{1}{2x+2+Ce^{x}}


Answer: y(x)=1Cex+2(x+1)y(x)=\frac{1}{Ce^x+2(x+1)}


1.2)(y2exy2+4x3)dx+(2xyexy23y2)dy=01.2) (y^2e^{xy^2}+4x^3)dx+(2xye^{xy^2}-3y^2)dy=0

P(x,y)=y2exy2+4x3,  Q(x,y)=2xyexy23y2P(x,y)=y^2e^{xy^2}+4x^3, \ \ Q(x,y)=2xye^{xy^2}-3y^2

P(x,y)y=Q(x,y)x=2yexy2+2xy3exy2\frac{\partial P(x,y)}{\partial y} =\frac{\partial Q(x,y)}{\partial x}=2ye^{xy^2}+2xy^3e^{xy^2}

So, we will find function f(x,y):f(x,y):

f(x,y)x=y2exy2+4x3,  f(x,y)y=2xyexy23y2\frac{\partial f(x,y)}{\partial x}=y^2e^{xy^2}+4x^3, \ \ \frac{\partial f(x,y) }{\partial y}=2xye^{xy^2}-3y^2

f(x,y)=(y2exy2+4x3)dx=exy2+x4+ϕ(y)f(x,y)=\int (y^2e^{xy^2}+4x^3)dx= e^{xy^2}+x^4+\phi (y)

f(x,y)=(2xyexy23y2)dy=exy2y3+ψ(x)f(x,y)=\int (2xye^{xy^2}-3y^2)dy =e^{xy^2} -y^3+\psi (x)


f(x,y)=exy2+x4y3f(x,y)=e^{xy^2}+x^4-y^3

f(x,y)xdx+f(x,y)ydy=0 f(x,y)C\frac{\partial f(x,y)}{\partial x} dx+\frac{\partial f(x,y)}{\partial y} dy=0 \ \Rightarrow f(x,y)\equiv C


Answer: exy2(x)+x4y3(x)=Ce^{xy^2(x)}+x^4-y^3(x)=C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS