Question #104801
A mass weighing 39.5 kg. stretches a spring 1/4m. At t=0 , the mass is released from a point 3/4m below the equilibrium position with an upward velocity of (5/4)m/second. Determine the function x(t) that describes the subsequent free motion.
1
Expert's answer
2020-03-13T10:24:21-0400

From Newton's second law mx¨=kxm\ddot{x}=-kx where kk is a spring stiffness, typing ω2=km\omega^2=\frac{k}{m} hence ω=km\omega=\sqrt\frac{k}{m} . From equilibrium mg=klmg=kl ,where l=14ml=\frac{1}{4}m then k=mglk=\frac{mg}{l} then ω=gl6.26s1\omega=\sqrt\frac{g}{l}\approx6.26s^-1

x(t)=acos(ωtα)x(t)=a\cos(\omega t-\alpha) ,v(t)=xt=aωsin(ωtα)v(t)=x_t'=-a\omega\sin(\omega t-\alpha)

x0(0)=acosαx_0(0)=a\cos\alpha ,v0(0)=aωsinαv_0(0)=a\omega\sin\alpha , since x0=0.75mx_0=0.75m , v0=1.25msv_0=1.25\frac{m}{s} hence a=x02+v02ω2=0.775a=\sqrt{x_0^2+\frac{v_0^2}{\omega^2}}=0.775 m

v0x0=aωsinαacosα=ωtanα\frac{v_0}{x_0}=\frac{a\omega \sin\alpha}{a\cos\alpha}=\omega\tan\alpha ,hence tanα=v0x0ω=0.27\tan\alpha=\frac{v_0}{x_0 \omega}=0.27, hence α=arctan0.271500.083π\alpha=\arctan0.27\approx15^0\approx0.083\pi then

x(t)=0.775cos(6.26t+0.083)mx(t)=0.775\cos(6.26t+0.083)m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS