y′′+y′+y=0λ2+λ+1=0D=1−4=−3=3i2λ1=−1−i32λ2=−1+i32y''+y'+y=0\\ \lambda^2+\lambda+1=0\\ D=1-4=-3=3i^2\\ \lambda_1=\frac{-1-i\sqrt3}{2}\\ \lambda_2=\frac{-1+i\sqrt3}{2}\\y′′+y′+y=0λ2+λ+1=0D=1−4=−3=3i2λ1=2−1−i3λ2=2−1+i3
Fundamental system is
y1=e−12xcos32xy2=e−12xsin32xy_1=e^{-\frac{1}{2}x}\cos\frac{\sqrt3}{2}x\\ y_2=e^{-\frac{1}{2}x}\sin\frac{\sqrt3}{2}x\\y1=e−21xcos23xy2=e−21xsin23x
Solution of equation is
y=c1e−12xcos32x++c2e−12xsin32xy=c_1e^{-\frac{1}{2}x}\cos\frac{\sqrt3}{2}x+\\ +c_2e^{-\frac{1}{2}x}\sin\frac{\sqrt3}{2}xy=c1e−21xcos23x++c2e−21xsin23x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments