Question #104876
Solve the ordinary differential equation
d2y/dx2+dy/dx+y=0
1
Expert's answer
2020-03-09T12:56:51-0400

y+y+y=0λ2+λ+1=0D=14=3=3i2λ1=1i32λ2=1+i32y''+y'+y=0\\ \lambda^2+\lambda+1=0\\ D=1-4=-3=3i^2\\ \lambda_1=\frac{-1-i\sqrt3}{2}\\ \lambda_2=\frac{-1+i\sqrt3}{2}\\

Fundamental system is

y1=e12xcos32xy2=e12xsin32xy_1=e^{-\frac{1}{2}x}\cos\frac{\sqrt3}{2}x\\ y_2=e^{-\frac{1}{2}x}\sin\frac{\sqrt3}{2}x\\

Solution of equation is

y=c1e12xcos32x++c2e12xsin32xy=c_1e^{-\frac{1}{2}x}\cos\frac{\sqrt3}{2}x+\\ +c_2e^{-\frac{1}{2}x}\sin\frac{\sqrt3}{2}x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS