SOLVE d 2 y/d x 2-cot x d y/d x-sin 2 x y=cos x-cos 3 x
Solution
P=- cot x Q=- sin 2 x R=cos x-cos 3 x
choose , z such that
(dz/d x) 2 = sin 2 x
taking square root on both sides we get
dz/d x=sin x
∫ dz/d x =∫ sin x d x
z= - cos x
z =- cos x
derivative with respect x
dz/d x= sin x
d 2 z/d x 2= cos x
P 1= (d 2 z/d x 2+ P dz/d x )/(dz/d x) 2
P 1=cos x-cot x sin x/sin 2 x
P 1= {cos x-(cos x/sin x)sin x}/sin 2 x
P 1=cos x-cos x/sin 2 x
P 1=0
Q 1=Q/(dz/d x)2
Q 1= - sin 2 x/sin 2 x
R 1 = Q/(dz/d x) 2
R 1 = (cos x-cos 3 x)/sin 2 x
R 1= -z-(-z 3)/{1-(-z)2}
R 1= -z+z 3/1-z 2
R 1= - z(-z 2+1)/(1-z 2)
R 1 = -z
Reduced Equation is
d 2 y/d z 2-y= -z .......>(1)
Complementary solution:-
Auxiliary Equation is
m 2 -1=0
m=±1
y c(x)=C 1 e z+C 2 e -z
Particular Solution:-
y p(x)= -A z (2)
derivative w.r.t z
d y/dz= -A
again derivative
d 2 y/d z 2=0
by putting the value in equation no 1
0+A z=-z
A=-1
putting in equation no 2
y p(x)= z
y(x)=y c(x)+y p(x)
y(x)=C 1 e z+C 2 e -z +z
Hence The complete solution is
y(x)=C 1 e z+ C 2 e -z+z
y(x)=C 1 e -cos x+ C 2 e cos x -cos x Answer
Comments
Leave a comment