y''+p(x)y'+q(x)y=r(x)
yp=−y1∫(y2∗r(x))/(W(y1,y2))dx+y2∫(y1∗r(x))/(W(y1,y2))dx
y''+y'/x-y/x^2=exp[x]
y1=x
y2=1/x
W(y1,y2)=−2/x
yp=−x∫((1/x)∗exp[x]/(−2/x))dx+1/x∫((x∗exp[x])/(−2/x))dx
yp=x∫(exp[x]/2)dx−1/(2x)∫((x2∗exp[x])dx
yp=x/2(exp[x]+c1)−1/(2x)∗(exp[x]∗(2−2x+x2)+c2)
y=exp[x]−exp[x]/x+c1∗x+c2/x
Comments