Question #102571
Apply the method of variations of parameters to solve the following differential equations:x^2y" +xy'-y=x^2e^x
1
Expert's answer
2020-02-11T10:44:01-0500

y''+p(x)y'+q(x)y=r(x)

yp=y1(y2r(x))/(W(y1,y2))dx+y2(y1r(x))/(W(y1,y2))dxyp=-y1\int(y2*r(x))/(W(y1,y2))dx+y2\int(y1*r(x))/(W(y1,y2))dx

y''+y'/x-y/x^2=exp[x]

y1=x

y2=1/x

W(y1,y2)=2/xW(y1,y2)=-2/x

yp=x((1/x)exp[x]/(2/x))dx+1/x((xexp[x])/(2/x))dxyp=-x\int((1/x)*exp[x]/(-2/x))dx+1/x\int((x*exp[x])/(-2/x))dx

yp=x(exp[x]/2)dx1/(2x)((x2exp[x])dxyp=x\int(exp[x]/2)dx-1/(2x)\int((x^2*exp[x])dx

yp=x/2(exp[x]+c1)1/(2x)(exp[x](22x+x2)+c2)yp=x/2(exp[x]+c1)-1/(2x)*(exp[x]*(2-2x+x^2)+c2)

y=exp[x]exp[x]/x+c1x+c2/xy=exp[x]-exp[x]/x+c1*x+c2/x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS