y''+p(x)y'+q(x)y=r(x)
"yp=-y1\\int(y2*r(x))\/(W(y1,y2))dx+y2\\int(y1*r(x))\/(W(y1,y2))dx"
y''+y'/x-y/x^2=exp[x]
y1=x
y2=1/x
"W(y1,y2)=-2\/x"
"yp=-x\\int((1\/x)*exp[x]\/(-2\/x))dx+1\/x\\int((x*exp[x])\/(-2\/x))dx"
"yp=x\\int(exp[x]\/2)dx-1\/(2x)\\int((x^2*exp[x])dx"
"yp=x\/2(exp[x]+c1)-1\/(2x)*(exp[x]*(2-2x+x^2)+c2)"
"y=exp[x]-exp[x]\/x+c1*x+c2\/x"
Comments
Leave a comment