Verify the Pfaffian Differential equation
"(y^2+yz+z^2)dx+(z^2+zx+x^2)dy+(x^2 +xy+y^2)dz=0"
is integrable and find its primitive.
The necessary and sufficient condition for iintegrability is
"X=(y^2+yz+z^2,z^2+zx+x^2,x^2 +xy+y^2)"
So that
"=\\mathbf i(x+2y-2z-x)- \\mathbf j(2x+y-y-2z)+""+\\mathbf k(z+2x-2y-z)""=2(y-z)\\mathbf i+2(z-x) \\mathbf j+2(x-y) \\mathbf k"
"X\\cdot curlX=2(y^2+yz+z^2)(y-z)+""+2(z^2+zx+x^2)(z-x)+2(x^2 +xy+y^2)(x-y)=""=2(y^3-y^2z+y^2z-yz^2+yz^2-z^3)+""+2(z^3-xz^2+xz^2-x^2z+x^2z-x^3)+""=2(x^3-x^2y+x^2y-xy^2+xy^2-y^3)=0"
Thus the given equation is integrable.
The auxiliary equations are
"{dx \\over 2(z-y)}={dy \\over 2(x-z)}={dz \\over 2(y-x)}"
"{dx \\over z-y}={dy \\over x-z}={dz \\over y-x}"
"(y+z)dx+(x+z)dy+(x+y)dz=0=>xy+yz+zx=c_2=v"
Formulate the equation "Adu+Bdv=0" and compare with the given equation.
"Adx+Ady+Adz+Bxdy+Bydx+Bzdy+Bydz+Bzdx+Bxdz=0"
"B=x+y+z""A=-xy-yz-xz"
Then
"Adu+Bdv=0""-vdu+udv=0"
"{dv \\over v}={du \\over u}"
"\\ln v=\\ln u+\\ln c""v=cu"
The required solution is
Comments
Leave a comment