1 ) W e f i n d f ′ ( x ) : f ′ ( x ) = − 3 x 2 + 4 x − 1 ; 2 ) f ′ ( x ) = 0 − 3 x 2 + 4 x − 1 = 0 ; 3 x 2 − 4 x + 1 = 0 ; D = b 2 − 4 a c = ( − 4 ) 2 − 4 ∗ 3 ∗ 1 = 16 − 12 = 4 ; x 1 = − b − D 2 a = 4 − 2 2 ∗ 3 = 2 6 = 1 3 ; x 2 = − b + D 2 a = 4 + 2 2 ∗ 3 = 6 6 = 1 ; 1) We \, find \, f'(x):\\
f'(x) = -3x^2 + 4x-1; \\
2) f'(x) = 0 \\
-3x^2 + 4x - 1 = 0; \\
3x^2 - 4x +1 = 0; \\
D = b^2 - 4ac = (-4)^2 - 4*3*1 = 16 - 12 = 4; \\
x_1 = \frac{-b - \sqrt{D}}{2a} = \frac{4 - 2}{2*3} = \frac{2}{6} = \frac{1}{3}; \\
x_2 = \frac{-b + \sqrt{D}}{2a} = \frac{4 + 2}{2*3} = \frac{6}{6} = 1; 1 ) W e f in d f ′ ( x ) : f ′ ( x ) = − 3 x 2 + 4 x − 1 ; 2 ) f ′ ( x ) = 0 − 3 x 2 + 4 x − 1 = 0 ; 3 x 2 − 4 x + 1 = 0 ; D = b 2 − 4 a c = ( − 4 ) 2 − 4 ∗ 3 ∗ 1 = 16 − 12 = 4 ; x 1 = 2 a − b − D = 2 ∗ 3 4 − 2 = 6 2 = 3 1 ; x 2 = 2 a − b + D = 2 ∗ 3 4 + 2 = 6 6 = 1 ;
3)
4 ) f ( 0 ) = − 0 3 + 2 ∗ 0 2 − 0 = 0 ; f ( 1 3 ) = − ( 1 3 ) 3 + 2 ( 1 3 ) 2 − 1 3 = − 4 27 ; f ( 1 ) = − 1 3 + 2 ∗ 1 2 − 1 = 0 ; f ( 2 ) = − 2 3 + 2 ∗ 2 2 − 2 = − 2 ; m a x f = m a x { 0 ; − 4 27 ; − 2 } = 0 ; m i n f = m i n { 0 ; − 4 27 ; − 2 } = − 2. 4) \newline
f(0) = -0^3+2*0^2-0= 0; \newline
f(\frac{1}{3}) = -(\frac{1}{3})^3 + 2(\frac{1}{3})^2 - \frac{1}{3} = -\frac{4}{27};\newline
f(1) = -1^3 +2*1^2-1 = 0; \newline
f(2) = -2^3 + 2*2^2 - 2 = -2;\\
max \, f=max \{0; -\frac{4}{27};-2\}=0;\\
min \,f=min \{0; -\frac{4}{27};-2\}=-2.\\ 4 ) f ( 0 ) = − 0 3 + 2 ∗ 0 2 − 0 = 0 ; f ( 3 1 ) = − ( 3 1 ) 3 + 2 ( 3 1 ) 2 − 3 1 = − 27 4 ; f ( 1 ) = − 1 3 + 2 ∗ 1 2 − 1 = 0 ; f ( 2 ) = − 2 3 + 2 ∗ 2 2 − 2 = − 2 ; ma x f = ma x { 0 ; − 27 4 ; − 2 } = 0 ; min f = min { 0 ; − 27 4 ; − 2 } = − 2.
5) Therefore, the function f ( x ) = − x 3 + 2 x 2 − x f(x) = -x^3 + 2x^2 - x f ( x ) = − x 3 + 2 x 2 − x in the interval [ 0 , 2 ] [0,2] [ 0 , 2 ] has its own minimum equal to − 2 -2 − 2 (the function attains this minimum at the point x = 2 x=2 x = 2 ) and the function has the maximum equal to 0 (the function attains this maximum at the points x = 0 x = 0 x = 0 and x = 1 x=1 x = 1 ).
Comments