Question #100205
Determine the maximum and minimum of the function f (x) = -x3 + 2x2 – x [0.2].
1
Expert's answer
2019-12-12T12:22:21-0500

1)Wefindf(x):f(x)=3x2+4x1;2)f(x)=03x2+4x1=0;3x24x+1=0;D=b24ac=(4)2431=1612=4;x1=bD2a=4223=26=13;x2=b+D2a=4+223=66=1;1) We \, find \, f'(x):\\ f'(x) = -3x^2 + 4x-1; \\ 2) f'(x) = 0 \\ -3x^2 + 4x - 1 = 0; \\ 3x^2 - 4x +1 = 0; \\ D = b^2 - 4ac = (-4)^2 - 4*3*1 = 16 - 12 = 4; \\ x_1 = \frac{-b - \sqrt{D}}{2a} = \frac{4 - 2}{2*3} = \frac{2}{6} = \frac{1}{3}; \\ x_2 = \frac{-b + \sqrt{D}}{2a} = \frac{4 + 2}{2*3} = \frac{6}{6} = 1;


3)

4)f(0)=03+2020=0;f(13)=(13)3+2(13)213=427;f(1)=13+2121=0;f(2)=23+2222=2;maxf=max{0;427;2}=0;minf=min{0;427;2}=2.4) \newline f(0) = -0^3+2*0^2-0= 0; \newline f(\frac{1}{3}) = -(\frac{1}{3})^3 + 2(\frac{1}{3})^2 - \frac{1}{3} = -\frac{4}{27};\newline f(1) = -1^3 +2*1^2-1 = 0; \newline f(2) = -2^3 + 2*2^2 - 2 = -2;\\ max \, f=max \{0; -\frac{4}{27};-2\}=0;\\ min \,f=min \{0; -\frac{4}{27};-2\}=-2.\\

5) Therefore, the function  f(x)=x3+2x2xf(x) = -x^3 + 2x^2 - x in the interval [0,2][0,2]  has its own minimum equal to 2-2 (the function attains this minimum at the point x=2x=2) and the function has the maximum equal to 0 (the function attains this maximum at the points x=0x = 0 and x=1x=1).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS