Question #99956
Could you help me find the general solution for these equations, please? Thank you

y'''+ y'' = y + x^5

y(y'') = y' + 8x^3
1
Expert's answer
2019-12-10T09:31:23-0500

Equation #1


y+y=y+x5y'''+y''=y+x^5

1 STEP: Solve a homogeneous equation


y+yy=0y'''+y''-y=0\\

We are looking for a solution in the form


y(x)=ekxy=k2ekxandy=k3ekxy(x)=e^{kx}\longrightarrow\,y''=k^2\cdot e^{kx}\,\,\,and\,\,\,y'''=k^3\cdot e^{kx}

Then,


k3ekx+k2ekxekx=0k3+k21=0k^3\cdot e^{kx}+k^2\cdot e^{kx}-e^{kx}=0\longrightarrow\\ k^3+k^2-1=0

the cubic equation has three solutions: one real and two complex


k1=13(1+25236923+25+36923)k2=131i36(25236923)1+i36(25+36923)k3=131+i36(25236923)1i36(25+36923)k_1=\frac{1}{3}\left(-1+\sqrt[3]{\frac{25}{2}-\frac{3\sqrt{69}}{2}}+\sqrt[3]{\frac{25+3\sqrt{69}}{2}}\right)\\[0.5cm] k_2=-\frac{1}{3}-\frac{1-i\sqrt{3}}{6}\left(\sqrt[3]{\frac{25}{2}-\frac{3\sqrt{69}}{2}}\right)-\frac{1+ i\sqrt{3}}{6}\left(\sqrt[3]{\frac{25+3\sqrt{69}}{2}}\right)\\[0.5cm] k_3=-\frac{1}{3}-\frac{1+i\sqrt{3}}{6}\left(\sqrt[3]{\frac{25}{2}-\frac{3\sqrt{69}}{2}}\right)-\frac{1- i\sqrt{3}}{6}\left(\sqrt[3]{\frac{25+3\sqrt{69}}{2}}\right)\\[0.5cm]

Then,


y(x)=C1ek1x+C2ek2x+C3ek3xhomogeneoussolution\boxed{y(x)=C_1\cdot e^{k_1x}+C_2\cdot e^{k_2x}+C_3\cdot e^{k_3x}-homogeneous\,\,\,solution}

2 STEP: Solve an Inhomogeneous Equation

We are looking for a solution in the form


y(x)=Ax5+Bx4+Cx3+Dx2+Ex+Fy(x)=Ax^5+Bx^4+Cx^3+Dx^2+Ex+F

Then,


y=20Ax3+12Bx2+6Cx+2Dy=60Ax2+24Bx+6Cy''=20Ax^3+12Bx^2+6Cx+2D\\[0.3cm] y'''=60Ax^2+24Bx+6C

Substitute in the original equation

60Ax2+24Bx+6C+20Ax3+12Bx2+6Cx+2D==Ax5+Bx4+Cx3+Dx2+Ex+F+x5(A+1)x5+Bx4+(C20A)x3++(D60A12B)x2+(E24B6C)x+(F6C2D)=0A+1=0A=1B=0C20A=0C=20D60A12B=0D=60E24B6C=0E=120F6C2D=0F=24060Ax^2+24Bx+6C+20Ax^3+12Bx^2+6Cx+2D=\\[0.3cm] =Ax^5+Bx^4+Cx^3+Dx^2+Ex+F+x^5\longrightarrow\\[0.3cm] (A+1)x^5+Bx^4+(C-20A)x^3+\\[0.3cm] +(D-60A-12B)x^2+(E-24B-6C)x+(F-6C-2D)=0\\[0.3cm] A+1=0\longrightarrow\boxed{A=-1}\\[0.3cm] \boxed{B=0}\\[0.3cm] C-20A=0\longrightarrow\boxed{C=-20}\\[0.3cm] D-60A-12B=0\longrightarrow\boxed{D=-60}\\[0.3cm] E-24B-6C=0\longrightarrow\boxed{E=-120}\\[0.3cm] F--6C-2D=0\longrightarrow\boxed{F=-240}\\[0.3cm]

Conclusion,


y(x)=x520x360x2120x240inhomogeneoussolutiony(x)=-x^5-20x^3-60x^2-120x-240-inhomogeneous\,\,\,solution

General conclusion:


y(x)=C1ek1x+C2ek2x+C3ek3xx520x360x2120x240\boxed{y(x)=C_1e^{k_1x}+C_2e^{k_2x}+C_3e^{k_3x}-x^5-20x^3-60x^2-120x-240}

ANSWER

y(x)=C1ek1x+C2ek2x+C3ek3xx520x360x2120x240y(x)=C_1e^{k_1x}+C_2e^{k_2x}+C_3e^{k_3x}-x^5-20x^3-60x^2-120x-240

Equation #2:


yy=y+8x3y\cdot y''=y'+8x^3

1 STEP: Solve a homogeneous equation


yy=yy=yyddx(y)=ddx(ln(y))y=ln(Cy)dydx=ln(Cy)dyln(Cy)=1dxy\cdot y''=y'\longrightarrow y''=\frac{y'}{y}\longrightarrow\\[0.3cm] \frac{d}{dx}\left(y'\right)=\frac{d}{dx}\left(\ln(y)\right)\longrightarrow y'=\ln(Cy)\longrightarrow\\[0.3cm] \frac{dy}{dx}=\ln(Cy)\longrightarrow\int\frac{dy}{\ln(Cy)}=\int1dx

Since


dyln(Cy)istheintegrallogarithm,notanelementaryfunction\int\frac{dy}{\ln(Cy)} \,is\, the\,integral\,logarithm, not\,an\,elementary\,function

This means that we can’t write down the general solution of this equation in the usual elementary functions. The only thing we CAN write is


li(y)=x+C\boxed{li(y)=x+C}

More information: https://en.wikipedia.org/wiki/Logarithmic_integral_function


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS