1) (y−2)dx−(x−y−1)dy=0
⟹dy/dx=(y−2)/(x−y−1)
Let x=u+h;y=v+k
⟹dx=du;dy=dv
dy/dx=[(v+k)−2]/[(u+h)−(v+k)−1)]
dv/du=[v+(k−2)]/[u−v+(h−k−1)]
Now;
k−2=0 ;
h−k−1=0
Solving these equations;
k=2;h=3
⟹x=u+3;y=v+2
⟹dv/du=v/(u−v)
Let; v/u=z⟹v=uz
⟹dv/du=z+u(dz/du)
⟹z+u(dz/du)=z/(1−z)
⟹∫(z−2−z−1)dz=∫du/u
⟹ln(uz)=−(1/z)+c
Substituting the values of u,v,z,h,k; we get;
(y−2)=ke−[(x−3)/(y−2)] (Answer)
2) (x−4y−9)dx+(4x+y−2)dy=0
⟹dy/dx=(4y−x+9)/(4x+y−2)
Let x=u+h;y=v+k
⟹dx=du;dy=dv
dy/dx=[4(v+k)−(u+h)+9]/[4(u+h)+(v+k)−2)]
dv/du=[4v−u+(4k−h+9)]/[4u+v+(4h+k−2)]
Now;
4k−h+9=0 ;
4h+k−2=0
Solving these equations;
k=−2;h=1
⟹x=u+1;y=v−2
⟹dv/du=(4v−u)/(4u+v)
v/u=z⟹v=uz
⟹dv/du=z+u(dz/du)
⟹z+u(dz/du)=(4z−1)/(z+4)
⟹∫[(z+4)/(z2+1)]dz=−∫du/u
⟹1/2(ln(u2(z2+1))=−tan−1z+c
Substituting the values of u,v,z,h,k ; we get;
(x−1)2+(y+2)2=ke−8tan−1[(y+2)/(x−1)] (Answer)
Comments