Question #99221
solve the following differential equations
1- (y-2)dx-(x-y-1)dy=0
2- (x-4y-9)dx+(4x+y-2)dy=0
1
Expert's answer
2019-11-25T11:46:19-0500

1) (y2)dx(xy1)dy=0(y-2)dx-(x-y-1)dy=0

    dy/dx=(y2)/(xy1)\implies dy/dx=(y-2)/(x-y-1)

Let x=u+h;y=v+kx=u+h;y=v+k

    dx=du;dy=dv\implies dx=du ; dy=dv

dy/dx=[(v+k)2]/[(u+h)(v+k)1)]dy/dx=[(v+k)-2]/[(u+h)-(v+k)-1)]

dv/du=[v+(k2)]/[uv+(hk1)]dv/du=[v+(k-2)]/[u-v+(h-k-1)]


Now;

k2=0k-2=0 ;

hk1=0h-k-1=0

Solving these equations;

k=2;h=3k=2; h=3


    x=u+3;y=v+2\implies x=u+3; y=v+2

    dv/du=v/(uv)\implies dv/du= v/(u-v)


Let; v/u=z    v=uzv/u=z \implies v=uz

    dv/du=z+u(dz/du)\implies dv/du=z+u(dz/du)


    z+u(dz/du)=z/(1z)\implies z+u(dz/du)= z/(1-z)

    (z2z1)dz=du/u\implies \int (z^{-2}-z^{-1})dz=\int du/u

    ln(uz)=(1/z)+c\implies ln(uz)=-(1/z)+c


Substituting the values of u,v,z,h,k;u,v, z, h, k; we get;


(y2)=ke[(x3)/(y2)](y-2)=ke^{-[(x-3)/(y-2)]} (Answer)



2) (x4y9)dx+(4x+y2)dy=0(x-4y-9)dx+(4x+y-2)dy=0

    dy/dx=(4yx+9)/(4x+y2)\implies dy/dx=(4y-x+9)/(4x+y-2)

Let x=u+h;y=v+kx=u+h;y=v+k

    dx=du;dy=dv\implies dx=du ; dy=dv

dy/dx=[4(v+k)(u+h)+9]/dy/dx=[4(v+k)-(u+h)+9]/[4(u+h)+(v+k)2)][4(u+h)+(v+k)-2)]

dv/du=[4vu+(4kh+9)]/dv/du=[4v-u+(4k-h+9)]/[4u+v+(4h+k2)][4u+v+(4h+k-2)]


Now;

4kh+9=04k-h+9=0 ;

4h+k2=04h+k-2=0

Solving these equations;

k=2;h=1k=-2; h=1


    x=u+1;y=v2\implies x=u+1; y=v-2

    dv/du=(4vu)/(4u+v)\implies dv/du= (4v-u)/(4u+v)


v/u=z    v=uzv/u=z \implies v=uz

    dv/du=z+u(dz/du)\implies dv/du=z+u(dz/du)


    z+u(dz/du)=(4z1)/(z+4)\implies z+u(dz/du)= (4z-1)/(z+4)

    [(z+4)/(z2+1)]dz=du/u\implies \int [(z+4)/(z^{2}+1)]dz=-\int du/u

    1/2(ln(u2(z2+1))=tan1z+c\implies 1/2(ln(u^2(z^2+1))=-tan^{-1}z+c


Substituting the values of u,v,z,h,ku,v, z, h, k ; we get;


(x1)2+(y+2)2=ke8tan1[(y+2)/(x1)](x-1)^2+(y+2)^2=ke^{-8tan^{-1}[(y+2)/(x-1)]} (Answer)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS