We rewrite this equation in the form
which allows us to highlight the function "F(x,y,z,p,q)=z-p^2x-q^2y" , which we need for Charpit's Method.
Charpit's equation is:
In our case,
"F(x,y,z,p,q)=z-p^2x-q^2y\\longrightarrow\\\\[0.3cm]\nF_p=-2px\\quad F_q=-2qy\\\\[0.3cm]\npF_p+qF_q=-2p^2x-2q^2x=-2\\left(p^2x+q^2y\\right)\\equiv-2z\\\\[0.3cm]\nF_x+pF_z=-p^2+p\\quad F_y+qF_z=-q^2+q"
Then, our equation takes the form
1) We are interested in the first and fourth element:
"\\frac{dx}{-2px}=\\frac{dp}{p^2-p}\\longrightarrow\\frac{dx}{-2px}=\\frac{dp}{p(p-1)}\\longrightarrow\\frac{dx}{-2x}=\\frac{dp}{(p-1)}\\\\[0.3cm]\n-\\frac{1}{2}\\cdot\\int\\frac{dx}{x}=\\int\\frac{dp}{p-1}\\longrightarrow\\\\[0.3cm]\n-\\frac{1}{2}\\ln|x|=\\ln|p-1|-\\ln|A|\\longrightarrow\n\\ln\\left|\\frac{A}{\\sqrt{x}}\\right|=\\ln|(p-1)|\\longrightarrow\\\\[0.3cm]\n\\frac{A}{\\sqrt{x}}=p-1\\longrightarrow\\boxed{p=\\frac{A+\\sqrt{x}}{\\sqrt{x}}}"
2) We are interested in the second and fifth element:
It remains to substitute the obtained results in the initial equation:
ANSWER
Comments
Leave a comment