y′+(cotx)y=xcscxdxdy+(cotx)y=(cscx)x
This equation is a linear equation of the form
dxdy+P(x)y=Q(x)
To solve this equation, we multiply both sides by the integrating factor I(x):
I(x)=e∫P(x)dx=e∫cotxdx∫cotxdx=∫sinxcosxdx=∫sinxd(sinx)=ln∣sinx∣+c
We take c=0. Then we get:
I(x)=eln∣sinx∣=∣sinx∣
Let's multiply both sides by sinx (absolute value doesn't really change anything):
sin(x)dxdy+sinx⋅cotx⋅y=x(cscx⋅sinx)sinxdxdy+cosx⋅y=xdxd(y⋅sinx)=x
Integrating both sides we get the answer:
y⋅sinx=2x2+cy=sinx2x2+c
Comments