Question #96319
The general solution of the equation is y'+(cotx)y=xcscx
1
Expert's answer
2019-10-14T12:00:12-0400

y+(cotx)y=xcscxdydx+(cotx)y=(cscx)xy'+(cotx)y=xcscx \newline \frac{dy}{dx}+(cotx)y=(cscx)x


This equation is a linear equation of the form


dydx+P(x)y=Q(x)\frac{dy}{dx}+P(x)y=Q(x)


To solve this equation, we multiply both sides by the integrating factor I(x):


I(x)=eP(x)dx=ecotxdxcotxdx=cosxsinxdx=d(sinx)sinx=lnsinx+cI(x)=e^{\int P(x)dx}=e^{\int cotxdx} \newline \int cotxdx = \int \frac{cosx}{sinx}dx = \int \frac{d(sinx)}{sinx} = ln|sinx|+c


We take c=0. Then we get:


I(x)=elnsinx=sinxI(x)=e^{ln|sinx|}=|sinx|


Let's multiply both sides by sinx (absolute value doesn't really change anything):


sin(x)dydx+sinxcotxy=x(cscxsinx)sinxdydx+cosxy=xddx(ysinx)=xsin(x)\frac{dy}{dx}+sinx\cdot cotx \cdot y=x(cscx \cdot sinx) \newline sinx\frac{dy}{dx}+cosx \cdot y=x \newline \frac{d}{dx}(y\cdot sinx)=x


Integrating both sides we get the answer:


ysinx=x22+cy=x22+csinxy\cdot sinx=\frac{x^2}{2}+c \newline y=\frac{\frac{x^2}{2}+c}{sinx}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS