Question #96320
Solve the equation xfrac{dy}{dx}-ay=x+1 where a is a constant
1
Expert's answer
2019-10-14T12:02:49-0400

First we find the general solution of xyay=0xy'-ay=0.

The chatacteristic equation of xyay=0xy'-ay=0 is λa=0\lambda-a=0, which has solution λ0=a\lambda_0=a.

We obtain that the general solution of xyay=0xy'-ay=0 is y=Cxλ0=Cxay=Cx^{\lambda_0}=Cx^a

Next, we find the partial solution of xyay=x+1xy'-ay=x+1 of the form y=Ax+By=Ax+B

We have xyay=x(Ax+B)a(Ax+B)=A(1a)xaBxy'-ay=x(Ax+B)'-a(Ax+B)=A(1-a)x-aB.

So we obtain that if a0a\neq 0 and a1a\neq 1 , then A(1a)xaB=x+1A(1-a)x-aB=x+1, that is A(1a)=1A(1-a)=1 and aB=1-aB=1. Then the general solution of xyay=x+1xy'-ay=x+1 is Cxa+Ax+B=Cxa+11ax1aCx^a+Ax+B=Cx^a+\frac{1}{1-a}x-\frac{1}{a}

Consider the case a=0a=0. In this case we have the equation xy=x+1xy'=x+1, that is y=1+1xy'=1+\frac{1}{x}, so y=(1+1x)dx=x+lnx+Cy=\int\left(1+\frac{1}{x}\right)dx=x+\ln|x|+C.

Consider case a=1a=1. In this case we have the equation xdydxy=x+1x\frac{dy}{dx}-y=x+1, that is xdyydx=(x+1)dxxdy-ydx=(x+1)dx. Divide this equation by x2x^2 and obtain xdyydxx2=(1x+1x2)dx\frac{xdy-ydx}{x^2}=\left(\frac{1}{x}+\frac{1}{x^2}\right)dx

xdyydxx2=d(yx)\frac{xdy-ydx}{x^2}=d\left(\frac{y}{x}\right) and (1x+1x2)dx=d(lnx1x)\left(\frac{1}{x}+\frac{1}{x^2}\right)dx=d\left(\ln|x|-\frac{1}{x}\right) , so we obtain the solution yx=lnx1x+C\frac{y}{x}=\ln|x|-\frac{1}{x}+C, that is y=xlnx1+Cxy=x\ln|x|-1+Cx

Answer:y={Cxa+11ax1a,if a∉{0,1}x+lnx+C,if a=0xlnx1+Cx,if a=1y=\begin{cases} Cx^a+\frac{1}{1-a}x-\frac{1}{a},&\text{if $a\not\in\{0,1\}$}\\ x+ln|x|+C,&\text{if $a=0$}\\ xln|x|-1+Cx,&\text{if $a=1$} \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS