Question #97224
Compute the n-th differential coefficient of \\(y=x\\log_{e}x\\)\n
1
Expert's answer
2019-10-25T10:31:19-0400

y=(xlnx)ny=(x\ln x)^n ;

y=n(lnx+1)(xlnx)n1y'=n(\ln x+1)(x\ln x)^{n-1} ;

y=n(n1)(lnx+1)(xlnx)n2+n1x(xlnx)n1=n(xlnx)n1((n1)(lnx+1)xlnx+1x)y''=n(n-1)(\ln x+1)(x\ln x)^{n-2}+n\frac{1}{x}(x\ln x)^{n-1}=n(x\ln x)^{n-1}\left(\frac{(n-1)(\ln x+1)}{x\ln x}+\frac{1}{x}\right) ;


y(n)=n!lnnxy^{(n)}=n!\ln^nx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS