y=(xlnx)ny=(x\ln x)^ny=(xlnx)n ;
y′=n(lnx+1)(xlnx)n−1y'=n(\ln x+1)(x\ln x)^{n-1}y′=n(lnx+1)(xlnx)n−1 ;
y′′=n(n−1)(lnx+1)(xlnx)n−2+n1x(xlnx)n−1=n(xlnx)n−1((n−1)(lnx+1)xlnx+1x)y''=n(n-1)(\ln x+1)(x\ln x)^{n-2}+n\frac{1}{x}(x\ln x)^{n-1}=n(x\ln x)^{n-1}\left(\frac{(n-1)(\ln x+1)}{x\ln x}+\frac{1}{x}\right)y′′=n(n−1)(lnx+1)(xlnx)n−2+nx1(xlnx)n−1=n(xlnx)n−1(xlnx(n−1)(lnx+1)+x1) ;
y(n)=n!lnnxy^{(n)}=n!\ln^nxy(n)=n!lnnx
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments