This is the boundary condition for laterally insulated rod having ends maintained at certain temperatures.
Governing equation for the following condition
"\u2202T(x,t)\/\u2202t=k \u2202^2T(x,t)\/\u2202x^2" ------------- (ii)
For separation of variable "T(x,t) = f(x).g(t)" ---------- (iii)
Substituting equation (iii) in equation (ii);
we get "g'(t)\/g(t) = k f''(x)\/f(x) =l" ----- (iv)
"g'(t)\/g(t)=l"
"d(g(t))\/g(t)=ldt"
Integrating both sides, we get
"ln (g(t)\/c_2) = lt"
"g(t)\/c_2 = exp(lt)"
"g(t) = c_2 exp(lt)" ----(v)
"k f''(x)\/f(x) =l"
"\u2202^2f(x)\/\u2202x^2=(l\/k)f(x)"
"\u2202^2f(x)\/\u2202x^2 =-m^2f(x)"
"l\/k= -m^2" -----(vi)
Solution to this differential equation is
"f(x) = c_1sin(mx)+c_2 cos(mx)"
"T(x,t) =(c_2 exp(lt))(c_1sin(mx)+c_3cos(mx))"
Using equation (i)
"T(0,t) =(c_2 exp(lt))(c_1sin(0)+c_3cos(0))= 0"
"T(0,t) =c_3c_2 exp(lt)= 0"
"c_3 =0"
Using equation (i)
"T(2,t)=(c_2 exp(lt))(c_1sin(m.2)) =0"
"T(2,t)=c_1c_2exp(lt)sin(m.2)=0"
We obtain "2.m= n\u03c0"
"m=n\u03c0\/2"
Using equation (vi)
"l\/k=-m^2=-n^2\u03c0^2\/4"
"l =-n^2\u03c0^2k\/4"
So the equation becomes
"T(x,t) =\\sum_{n=1}^{\\infty}(c_2 exp(-n^2\u03c0^2kt\/4))(c_1sin(n\u03c0x\/2))"
"T(x,t) =\\sum_{n=1}^{\\infty}(c_n(sin(n\u03c0x\/2) exp(-n^2\u03c0^2kt\/4))"
"c_n= c_1.c_2"
We have to find cn now
"T(x,0) =\\sum_{n=1}^{\\infty}(c_n(sin(n\u03c0x\/2) exp(-n^2\u03c0^2k.0\/4))"
"\\sum_{n=1}^{\\infty} (c_n(sin(n\u03c0x\/2) = 100(2x-x^2)"
It is a sine Fourier series.we know;
"c_n = 2\u00d7\\int_{0}^{2}(100(2x-x^2)(sin(n\u03c0x\/2))dx"
solving the integration using by parts and then putting the limits we get,
"c_n = -3200\/(n^3\u03c0^3)((-1)^n-1)"
Answer:
"T(x,t) = \\sum_{n=1}^{\\infty} (c_n(sin(n\u03c0x\/2) exp(-n^2\u03c0^2kt\/4))",
where "c_n = -3200\/(n^3\u03c0^3)((-1)^n-1)"
Comments
Leave a comment